Tree Genetics & Genomes

, Volume 3, Issue 2, pp 153–167 | Cite as

Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana)

  • D. Lachance
  • L.-P. Hamel
  • F. Pelletier
  • J. Valéro
  • M. Bernier-Cardou
  • K. Chapman
  • K. van Frankenhuyzen
  • A. Séguin
Original Paper


A synthetic version of the cry1Ab gene from Bacillus thuringiensis (Bt) was introduced into white spruce (Picea glauca) by microprojectile bombardment. A plasmid carrying the cry1Ab gene, driven by a ubiquitin (maize) promoter, was co-transferred with a plasmid containing the gus–nptII fusion gene as a screenable selection marker. Molecular analysis of the transgenic lines showed a high level (more than 90%) of co-integration of the cry1Ab gene with the screenable marker. A wide range of expression levels of the cry1Ab gene and corresponding endotoxin was obtained. Accumulation of the Cry1Ab protein was evaluated in embryogenic tissue, the needles of somatic seedlings and in the needles of 5-year-old field-grown trees of individual lines. Laboratory and field insect feeding trials suggest that several spruce transgenic lines were lethal to spruce budworm larvae.


Bacillus thuringiensis White spruce Budworm Insect resistance Biotechnology Conifers 



We thank Dr. I. Altosaar (University of Ottawa, Ottawa, CA) for providing the pKSB and pKUB vectors containing the synthetic cry1Ab gene, and Karine Roy-Loubier for assistance with the statistical analyses. We also thank Maria Luckevich for her assistance with the Western analyses. This research was supported by a grant from the National Biotechnology Strategy of Canada to A.S. and K.v.F.


  1. Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New YorkGoogle Scholar
  2. Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327CrossRefGoogle Scholar
  3. Boerjan W (2005) Biotechnology and the domestication of forest trees. Curr Opin Biotechnol 16:159–166PubMedCrossRefGoogle Scholar
  4. Breitler JC, Vassal JM, Catala MD, Meynard D, Marfa V, Mele E, Royer M, Murillo I, San Segundo B, Guiderdoni E, Messeguer J (2004) Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2:417–430PubMedCrossRefGoogle Scholar
  5. Brown H, Prescott R (1999) Applied mixed models in medicine. Wiley, Chichester, UKGoogle Scholar
  6. Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91CrossRefGoogle Scholar
  7. Carozzi NB, Warren GW, Desai N, Jayne SM, Lotstein R, Rice DA, Evola S, Koziel MG (1992) Expression of a chimeric CaMV-35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Mol Biol 20:539–548PubMedCrossRefGoogle Scholar
  8. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116Google Scholar
  9. Charest PJ, Devantier Y, Lachance D (1996) Stable genetic transformation of Picea mariana (black spruce) via particle bombardment. In Vitro Cell Dev Biol Plant 32:91–99CrossRefGoogle Scholar
  10. Cheng XY, Sardana R, Kaplan H, Altosaar I (1998a) Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95:2767–2772PubMedCrossRefGoogle Scholar
  11. Cheng XY, Sardana RK, Altosaar I (1998b) Rice transformation by Agrobacterium infection. In: Cunningham C, Porter AJR (eds) Recombinant proteins from plants. Humana, Totowa, NJ, pp 1–9Google Scholar
  12. Dandekar AM, McGranahan GH, Vail PV, Uratsu SL, Leslie CA, Tebbets JS (1998) High levels of expression of full-length cryIA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci 131:181–193CrossRefGoogle Scholar
  13. Datla RSS, Hammerlindl JK, Pelcher LE, Crosby WL, Selvaraj G (1991) A bifunctional fusion between b-glucuronidase and neomycin phosphotransferase: a broad-spectrum marker enzyme for plants. Gene 101:239–246PubMedCrossRefGoogle Scholar
  14. de Maagd RA, Bosch D, Stiekema W (1999) Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends Plant Sci 4:9–13PubMedCrossRefGoogle Scholar
  15. Diehn SH, De Rocher EJ, Green PJ (1996) Problems that can limit the expression of foreign genes in plants: lessons to be learned from B.t.-toxin genes. In: Setlow JK (ed) Genetic engineering: principles and methods. Plenum, New York, pp 83–99Google Scholar
  16. Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Bio/technology 11:84–89CrossRefGoogle Scholar
  17. Ferry N, Edwards MG, Gatehouse J, Capell T, Christou P, Gatehouse AM (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res 15:13–19PubMedCrossRefGoogle Scholar
  18. Fladung M, Dietrich E (2006) Tree transgenesis, recent developments. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect-resistant transgenic Pinus radiata. Plant Cell Rep 24:103–111PubMedCrossRefGoogle Scholar
  20. Jouanin L, Bonadé-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131:1–11CrossRefGoogle Scholar
  21. Klimaszewska K, Lachance D, Pelletier G, Lelu M-A, Séguin A (2001) Regeneration of transgenic Picea glauca, P. mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 37:748–755CrossRefGoogle Scholar
  22. Klimaszewska K, Lachance D, Bernier-Cardou M, Rutledge RG (2003) Transgene integration patterns and expression levels in transgenic tissue lines of Picea mariana, P. glauca and P. abies. Plant Cell Rep 21:1080–1087PubMedCrossRefGoogle Scholar
  23. Mazier M, Pannetier C, Tourneur J, Jouanin L, Giband M (1997) The expression of Bacillus thuringiensis toxin genes in plant cells. Biotechnol Annu Rev 3:313–347CrossRefGoogle Scholar
  24. McMorran A (1965) A synthetic diet of the spruce budworm, Choristoneura fumiferana (Clem.). Can Entomol 97:58–62CrossRefGoogle Scholar
  25. Meyer P (1995) Understanding and controlling transgene expression. Trends Biotechnol 13:332–337CrossRefGoogle Scholar
  26. Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang SJ, Wilde HD, Kodrzycki RJ, Zhang CS, Gause KC, Parks DW, Hinchee MA (2005) Forest biotechnology: innovative methods, emerging opportunities. In Vitro Cell Dev Biol Plant 41:701–717CrossRefGoogle Scholar
  27. Peferoen M (1997) Progress and prospects for field use of Bt genes in crops. Trends Biotechnol 15:173–177CrossRefGoogle Scholar
  28. Peña L, Séguin A (2001) Recent advances in genetic transformation of trees. Trends Biotechnol 19:500–506PubMedCrossRefGoogle Scholar
  29. Richard S, Morency MJ, Drevet C, Jouanin L, Séguin A (2000) Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol Biol 43:1–10PubMedCrossRefGoogle Scholar
  30. Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71PubMedCrossRefGoogle Scholar
  31. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  32. Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175CrossRefGoogle Scholar
  33. Séguin A, Lachance D, Charest PJ (1996) Transient gene expression and stable genetic transformation into conifer tissues by microprojectile bombardment. In: Lindsey K (ed) Plant Molecular Biology Manual. Kluwer, Dordrecht, pp 1–46Google Scholar
  34. Takimoto I, Christensen AH, Quail PH, Uchimiya H, Toki S (1994) Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol Biol 26:1007–1012PubMedCrossRefGoogle Scholar
  35. Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15PubMedCrossRefGoogle Scholar
  36. Tang W, Tian Y (2003) Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J Exp Bot 54:835–844PubMedCrossRefGoogle Scholar
  37. Tang K, Tinjuangjun P, Xu Y, Sun X, Gatehouse JA, Ronald PC, Qi H, Lu X, Christou P, Kohli A (1999) Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta 208:552–563CrossRefGoogle Scholar
  38. Torisky R, Fellers JP, Collins GB (1996) A focusing device for tissue transformation with the Du Pont/BioRad PDS1000 helium microprojectile system. Plant Mol Biol Report 14:124–133Google Scholar
  39. Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37CrossRefGoogle Scholar
  40. Valéro JR, Mohammedi S, Payne NJ, Tyagi RD (1999) Microbial control of defoliating forest insects. Recent Res Dev Microbiol 3:455–464Google Scholar
  41. van Frankenhuyzen K, Beardmore T (2004) Current status and environmental impact of transgenic forest trees. Can J For Res 34:1163–1180CrossRefGoogle Scholar
  42. van Frankenhuyzen K, Gringorten JL, Milne RE, Gauthier D, Pusztai M, Brousseau R, Masson L (1991) Specificity of activated CryIA proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for defoliating forest Lepidoptera. Appl Environ Microbiol 57:1650–1655PubMedGoogle Scholar
  43. Wu G, Cui H, Ye G, Xia Y, Sardana R, Cheng X, Li Y, Altosaar I, Shu Q (2002) Inheritance and expression of the cry1Ab gene in Bt (Bacillus thuringiensis) transgenic rice. Theor Appl Genet 104:727–734PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • D. Lachance
    • 1
  • L.-P. Hamel
    • 1
  • F. Pelletier
    • 1
  • J. Valéro
    • 1
  • M. Bernier-Cardou
    • 1
  • K. Chapman
    • 2
  • K. van Frankenhuyzen
    • 2
  • A. Séguin
    • 1
  1. 1.Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecCanada
  2. 2.Natural Resources Canada, Canadian Forest ServiceGreat Lakes Forestry CentreSault Ste. MarieCanada

Personalised recommendations