Tree Genetics & Genomes

, 3:311 | Cite as

Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map

  • L. Pierantoni
  • L. Dondini
  • K.-H. Cho
  • I.-S. Shin
  • F. Gennari
  • R. Chiodini
  • S. Tartarini
  • S.-J. Kang
  • S. Sansavini
Original Paper


Pear scab caused by Venturia pyrina is an economically important disease throughout the world and can cause severe crop loss in susceptible cultivars. The varying range of susceptibility to pear scab in F1 populations has made it possible to identify quantitative trait loci (QTLs). Ninety-five seedlings derived from the cross ‘Abbè Fétel’ (AF) × ‘Max Red Bartlett’ (MRB) were evaluated for scab resistance in greenhouse tests, with 39% being classified as resistant, 33 as moderately susceptible and 28 as highly susceptible. Amplified fragment length polymorphisms (157) and simple sequence repeats (41) were used to construct two maps, one of 908.1 cM (AF) and the other of 879.8 cM (MRB). The analysis of the resistance data collected made it possible to identify two major QTLs on linkage groups 3 and 7 associated with resistance to V. pyrina. Both QTLs explained 88% of the phenotypic variance and the log of odds values were higher than 10, suggesting the involvement of two major genes in pear scab resistance.


Abbé Fétel Max Red Bartlett Scab resistance Venturia pyrina 



‘Abbé Fétel’


amplified fragment length polymorphism




linkage group


log of odds


marker assisted selection


microsatellite-anchored fragment length polymorphism


‘Max Red Bartlett’


polymerase chain reaction


quantitative trait locus


random amplified polymorphic DNA


resistance gene analog


single strand conformational polymorphism


simple sequence repeat



This research was supported with funds from the “Agreement on the Cooperative Research Project” between Alma Mater Studiorum—Dipartimento di Colture Arboree—Center for Fruit Breeding and Variety Improvement (CFBVI) of the University of Bologna (UB) of Italy and Horticultural Research Institute (NHRI) of the Rural Development Administration (RDA) of the Republic of Korea.


  1. Abe K, Kotobuki K, Saito T, Terai O (2000) Inheritance of resistance to pear scab from European pears to Asian pears. J Jpn Soc Hort Sci 1:1–8CrossRefGoogle Scholar
  2. Baldi P, Patocchi A, Zini E, Toller C, Velasco R, Komjanc M (2004) Cloning and linkage mapping of resistance gene homologues in apple. Theor Appl Genet 109:231–239PubMedCrossRefGoogle Scholar
  3. Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. PNAS 101:886–890PubMedCrossRefGoogle Scholar
  4. Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529PubMedCrossRefGoogle Scholar
  5. Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset MN, Paulin JP, Durel CE (2005a) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135PubMedCrossRefGoogle Scholar
  6. Calenge F, Van der Linden CG, Van de Weg WE, Schouten HJ, Van Arkel G, Denance C, Durel CE (2005b) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668PubMedCrossRefGoogle Scholar
  7. Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol 40:249–256CrossRefGoogle Scholar
  8. Chevalier M, Bernard C, Tellier M, Lespinasse Y, Filmond R, Le Lezec M (2004) Variability in the reaction of several pear (Pyrus communis) cultivars to different inocula of Venturia pyrina. Eucarpia symposium on fruit breeding and genetics. Acta Hortic 663:177–181Google Scholar
  9. Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, Esmenjaud D (2004) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–73PubMedCrossRefGoogle Scholar
  10. Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418CrossRefGoogle Scholar
  11. Durel CE, Calenge F, Parisi L, van de Weg WE, Kodde LP, Liebhard R, Gessler C, Thiermann M, Dunemann F, Gennari F, Tartarini S, Lespinasse Y (2004) An overview of the position and robustness of scab resistance QTLs and major genes by aligning genetic maps of five apple progenies. XI Eucarpia symposium on fruit breeding and genetics. Acta Hortic 663:135–140Google Scholar
  12. Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T, Terai O, Matsuta N, Hayashi T (2001) Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breed Sci 51:179–184CrossRefGoogle Scholar
  13. Liebhard R, Gianfranceschi L, Koller B, Ryder R, Tarchini E, van de Weg WE, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241CrossRefGoogle Scholar
  14. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508PubMedGoogle Scholar
  15. Maguire TL, Collins GG, Sedgley M (1994) A modified CTAB DNA extraction procedure for plants belonging to the family Proteaceae. Plant Mol Biol Rep 12:106–109Google Scholar
  16. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple using multi-allelic markers. Theor Appl Genet 97:60–63CrossRefGoogle Scholar
  17. Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeatresistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322PubMedGoogle Scholar
  18. Pierantoni L, Cho K-H, Shin I-S, Chiodini R, Tartarini S, Dondini L, Kang S-J, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 population. Theor Appl Genet 109:1519–1524PubMedCrossRefGoogle Scholar
  19. Soriano JM, Vilanova S, Romero C, Llacer G, Badenes ML (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theor Appl Genet 110:980–989PubMedCrossRefGoogle Scholar
  20. van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624PubMedCrossRefGoogle Scholar
  21. van Ooijen JW, Voorrips RW (2002) Joinmap 3.0. Software for the calculation of genetic linkage maps. Plant Research International. Wageningen, The NetherlandsGoogle Scholar
  22. van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0. Software for the calculation of QTL positions on genetic maps. Plant Research International. Wageningen, The NetherlandsGoogle Scholar
  23. Vilanova S, Romero C, Abbott AG, Llacer G, Badenes ML (2003) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers. Mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet 107:239–247PubMedCrossRefGoogle Scholar
  24. Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78CrossRefGoogle Scholar
  25. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  26. Williams EB, Kuc J (1969) Annu Rev Phytopathol 7:223–246CrossRefGoogle Scholar
  27. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:1–18Google Scholar
  28. Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2003) Genetic Linkage Maps of Japanese and European Pears Aligned to the Apple Consensus Map. XI Eucarpia symposium on fruit breeding and genetics. Acta Hortic 663:51–56Google Scholar
  29. Yamamoto T, Kimura T, Sawamura Y, Nishitani C, Ohta S, Adachi Y, Hirabayashi T, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2005) Genetic linkage maps of European and Japanese pears. Proceedings of plant and animal genomes XIII conference, San Diego, CA, Jan 15–19Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • L. Pierantoni
    • 1
  • L. Dondini
    • 1
  • K.-H. Cho
    • 2
  • I.-S. Shin
    • 2
  • F. Gennari
    • 1
  • R. Chiodini
    • 1
  • S. Tartarini
    • 1
  • S.-J. Kang
    • 2
  • S. Sansavini
    • 1
  1. 1.Dipartimento di Colture ArboreeUniversità degli Studi di BolognaBolognaItaly
  2. 2.National Horticultural Research Institute (RDA)SuwonRepublic of Korea

Personalised recommendations