Tree Genetics & Genomes

, Volume 2, Issue 1, pp 10–24 | Cite as

QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.)

  • David Pot
  • Jose-Carlos Rodrigues
  • Philippe Rozenberg
  • Guillaume Chantre
  • Josquin Tibbits
  • Christine Cahalan
  • Frédérique Pichavant
  • Christophe PlomionEmail author
Original Paper


A three-generation outbred pedigree of 186 individuals was used to identify the genomic regions involved in the variability of chemical and physical wood properties of Pinus pinaster. A total of 54 quantitative trait loci (QTLs) was detected, with an average of 2.4 QTLs per trait. Clusters of wood properties QTLs were found at several points in the genome, suggesting the existence of pleiotropic effects of a limited number of genes. The co-localizations observed in this study are in accordance with the genetic correlations previously reported in the literature. In addition, in an attempt to identify the genes underlying the QTLs, nine wood quality candidate genes involved in cell wall structure were localized on the genetic map. Only one of them, Korrigan, a gene encoding for a β 1-4 endo-glucanase known in Arabidopis thaliana to be involved in polysaccharide biosynthesis, co-localized with a wood quality QTL cluster involved in hemicellulose content and fibre characteristics. This finding is in accordance with results previously reported for this gene regarding its expression variability (transcriptome and proteome levels) and patterns of molecular evolution. The pertinence of this result will be tested in more rigorous designs in order to identify early selection predictors for wood quality.


Wood quality QTL Candidate gene Korrigan Pinus pinaster 



We thank Dr. H. Höfte for his helpful comments and advice.

This work was supported by funding from the European Union (GENIALITY: FAIR CT98-3953, GEMINI: QLRT-1999-00942), the Aquitaine Region (no. 2002 0307002A) and the Ministère de la Recherche (Biotech programme).


  1. 1.
    Alazard P, Raffin A (2003) La troisième génération de vergers à graines De nouvelles variétés pour 2010. In: Le progrès génétique en forêt. Groupe Pin maritime du Futur edsGoogle Scholar
  2. 2.
    Arcade A, Faivre-Rampant P, Pâques LE, Prat D (2002) Localisation of genomic regions controlling microdensitometric parameters of wood characteristics in hybrid larches. Ann For Sci 59:607–615CrossRefGoogle Scholar
  3. 3.
    Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the 49th Annual Corn and Sorghum Industry Research Conference, ASTA, Washington DC, pp 250–266Google Scholar
  4. 4.
    Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefPubMedGoogle Scholar
  5. 5.
    Bradshaw HD, Stettler RF (1995) Molecular genetics of growth and development in populus. IV. Mapping QTL with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963–973PubMedGoogle Scholar
  6. 6.
    Brendel O, Pot D, Plomion C, Rozenberg P, Guehl JM (2002) Genetic parameters and QTL analysis of δ13C and ring width in maritime pine. Plant Cell Environ 25:945–953CrossRefGoogle Scholar
  7. 7.
    Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L). III. QTL verification and candidate gene mapping. Genetics 164:1537–1546PubMedGoogle Scholar
  8. 8.
    Casasoli M, Pot D, Plomion C, Monteverdi MC, Barreneche T, Lauteri M, Villani F (2004) Identification of QTLs affecting adaptive traits in Castanea. Plant Cell Environ 24:1088–1101CrossRefGoogle Scholar
  9. 9.
    Chagné D, Lalane C, Madur D, Kumar S, Frigerio J-M, Krier C, Decroocq S, Savouré A, Bou-Dagher-Kharrat M, Bertocchi E, Brach J, Plomion C (2002) A high density genetic map of maritime pine based on AFLPs. Ann For Sci 59:627–636CrossRefGoogle Scholar
  10. 10.
    Chagné D, Brown G, Lalanne C, Madur D, Pot D, Neale D, Plomion C (2003) Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed 12:185–195CrossRefGoogle Scholar
  11. 11.
    Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  12. 12.
    Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker QTL-linkage and estimating. QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951PubMedGoogle Scholar
  13. 13.
    Devey ME, Carson SD, Nolan MF, Matheson AC, Te Riini C, Hohepa J (2004) QTL associations for density and diameter in Pinus radiate and the potential for marker aided selection. Theor Appl Genet 108:516–524CrossRefPubMedGoogle Scholar
  14. 14.
    Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420CrossRefPubMedGoogle Scholar
  15. 15.
    Fagard M, Höfte H, Vernhettes S (2000) Cell wall mutants. Plant Physiol Biochem 38:15–25CrossRefGoogle Scholar
  16. 16.
    Frewen BE, Chen TH, Howe GT, Davis J, Rhode A, Boerjan W, Bradshaw HD (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in populus. Genetics 154:837–845PubMedGoogle Scholar
  17. 17.
    Gion J-M, Lalanne C, Le Provost G, Ferry-Dumazet H, Paiva J, Frigerio JM, Chaumeil P, Barré A, de Daruvar A, Brach J, Claverol S, Bonneu M, Plomion C (2005) The proteome of maritime pine wood forming tissue. Proteomics 5:3731–3751CrossRefPubMedGoogle Scholar
  18. 18.
    Grattapaglia D, Sederoff RR (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  19. 19.
    Grattapaglia D, Bertolucci FLG, Penchel R, Sederoff RR (1996) Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144:1205–1214PubMedGoogle Scholar
  20. 20.
    Groover A, Devey M, Lee J, Megraw R, Mitchell-Olds T, Sherman B, Vujcic S, Williams C, Neale D (1994) Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics 138:1293–1300PubMedGoogle Scholar
  21. 21.
    Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001) Carbon partitioning to cellulose synthesis. Plant Mol Biol 47:29–51CrossRefPubMedGoogle Scholar
  22. 22.
    Hertzberg M, Aspeborg H, Schrader J, Anderson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlen M, Teeri TT, Lundenberg J, Sunberg B, Nilsson P (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci U S A 98:14732–14737CrossRefPubMedGoogle Scholar
  23. 23.
    Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211PubMedGoogle Scholar
  24. 24.
    Kremer A (1992) Predictions of age–age correlations of total height based on serial correlations between height increments in Maritime pine (Pinus pinaster Ait.). Theor Appl Genet 85:152–158CrossRefGoogle Scholar
  25. 25.
    Kumar S, Garrick DJ (2001) Genetic response to within-family selection using molecular markers in some radiata pine breeding schemes. Can J For Res 31:779–785CrossRefGoogle Scholar
  26. 26.
    Kumar S, Spelman RJ, Garrick DJ, Richardson TE, Lausberg M, Wilcox PL (2000) Multiple-marker mapping of wood density loci in an outbred pedigree of radiata pine. Theor Appl Genet 100:926–933CrossRefGoogle Scholar
  27. 27.
    Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative trait. Genetics 121:743–756Google Scholar
  28. 28.
    Lapierre C (1993) Applications of new methods for the investigation of lignin structure In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA-CSSA-SSSA, Madison, WI, pp 133–166Google Scholar
  29. 29.
    Larson PR, Kretschmann DE, Clark A III, Isebrands JG (2001) Formation and wood properties of juvenile wood in southern pines: a synopsis. General Technical Report FPL-GTR-129. USDA, Forest Service, Forest Products laboratory, Madison, WI, p 42Google Scholar
  30. 30.
    Le Provost G, Paiva J, Pot D, Brach J, Plomion C (2003) Seasonal variation in transcript accumulation in wood forming tissues of maritime pine (Pinus pinaster Ait) with emphasis on a cell wall glycine rich protein. Planta 217:820–830CrossRefPubMedGoogle Scholar
  31. 31.
    Lerceteau EC, Plomion C, Andersson B (2000) AFLP mapping and detection of quantitative trait loci (QTL) for economically important traits in Pinus sylvestris: a preliminary study. Mol Breed 6:451–458CrossRefGoogle Scholar
  32. 32.
    Mangin B, Goffinet B, Rebai A (1994) Constructing confidence intervals for QTL location. Genetics 138:1301–1308PubMedGoogle Scholar
  33. 33.
    Markussen T, Fladung M, Achere V, Favre JM, Faivre-Rampant P, Aragones A, Da Silva Perez, Havengt L, Ritter E (2003) Identification of QTL controlling growth, chemical and physical wood property traits in Pinus pinaster (Ait). Silvae Genet 52:8–15Google Scholar
  34. 34.
    Moran GF, Thamarus KA, Raymond CA, Qiu D, Uren T, Southerton SG (2002) Genomics of Eucalyptus wood traits. Ann For Sci 59:645–650CrossRefGoogle Scholar
  35. 35.
    Mouille G, Robin S, Lecomte M, Pagant S, Höfte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier Transform InfraRed (FT-IR) microspectroscopy. Plant J 35:393–404CrossRefPubMedGoogle Scholar
  36. 36.
    Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330CrossRefPubMedGoogle Scholar
  37. 37.
    Neale DB, Sewell MM, Brown G (2002) Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine. Ann For Sci 5:595–605CrossRefGoogle Scholar
  38. 38.
    Nyakuengama GJ, Evans R, Matheson C, Spencer DJ, Vinden P (1999) Wood quality and quantitative genetics of Pinus radiata D Don: fibre traits and wood quality. Appita J 52:348–350Google Scholar
  39. 39.
    Nyakuengama GJ, Matheson C, Evans R, Spencer D, Vinden P (2000) Effect of age on genetic control of Pinus radiata earlywood and latewood properties. Appita J 53:103–107Google Scholar
  40. 40.
    Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291CrossRefGoogle Scholar
  41. 41.
    Plomion C, Durel C-E, O’Malley DM (1996) Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet 93:849–858Google Scholar
  42. 42.
    Plomion C, Le Provost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523CrossRefPubMedGoogle Scholar
  43. 43.
    Pot D, Chantre G, Rozenberg P, Rodrigues JC, Jones Gwynn L, Pereira H, Hannrup B, Cahalan C, Plomion C (2002) Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait). Ann For Sci 59:563–575CrossRefGoogle Scholar
  44. 44.
    Pot D, McMillan L, Echt C, Le Provost G, Cato S, Plomion C (2005) Nucleotide variation in genes involved in wood formation in two pine species. New Phytol 167:101–112CrossRefPubMedGoogle Scholar
  45. 45.
    Raymond CA (2002) Genetics of Eucalyptus wood properties. Ann For Sci 59:525–531CrossRefGoogle Scholar
  46. 46.
    Rommens HM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean N, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui L-C, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065PubMedCrossRefGoogle Scholar
  47. 47.
    Sewell MM, Neale DB (2000) Mapping quantitative traits in forest trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer, the Netherlands, pp 407–423Google Scholar
  48. 48.
    Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTL influencing wood properties traits in loblolly pine (Pinus taeada L.). I. Physical wood properties. Theor Appl Genet 101:1273–1281CrossRefGoogle Scholar
  49. 49.
    Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002). Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet 104(2–3):214–222CrossRefPubMedGoogle Scholar
  50. 50.
    Strauss SH, Lande R, Namkoong G (1992) Limitations of molecular-marker-aided selection in forest tree breeding. Can J For Res 22:1050–1061Google Scholar
  51. 51.
    Van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811CrossRefGoogle Scholar
  52. 52.
    Van Ooijen JW, Voorrips RE (2001) Joinmap 30: software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands (Website: http://wwwjoinmapnl)
  53. 53.
    Verhaegen D, Plomion C, Gion JM, Poitel M, Costa P, Kremer A (1997) Quantitative trait dissection analysis in Eucalyptus using RAPD markers: 1—detection of QTLs in interspecific hybrid progeny, stability of QTL expression across different ages. Theor Appl Genet 95:597–608CrossRefGoogle Scholar
  54. 54.
    Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020PubMedGoogle Scholar
  55. 55.
    Wakamiya I, Newton RJ, Johnston JS, Price HJ (1993) Genome size and environmental factors in the genus Pinus. Am J Bot 80:1235–1241CrossRefGoogle Scholar
  56. 56.
    Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49:585–609CrossRefPubMedGoogle Scholar
  57. 57.
    Wilcox PL, Richardson TE, Carson SD (1997) Nature of quantitative trait variation in Pinus radiata: insights from QTL detection experiments. In: Burdon RD, Moore JM (eds) Proceedings of IUFRO ’97: genetics of radiata pine, Rotorua, New Zealand, December 1997. FRI Bull 203, pp 304–312Google Scholar
  58. 58.
    Wilcox PL, Carson SD, Richardson TE, Ball RD, Horgan GP, Carter P (2001) Cost–benefit analysis of marker based selection in seed orchard production populations of Pinus radiata. Can J For Sci 31(12):2213–2224Google Scholar
  59. 59.
    Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A 90:10972–10976PubMedCrossRefGoogle Scholar
  60. 60.
    Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res Camb 74:279–289Google Scholar
  61. 61.
    Zobel B, van Buijtenen JP (1989) Wood variation. Springer Series in Wood Science. Springer, Berlin Heidelberg New York, p 363Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • David Pot
    • 1
    • 2
  • Jose-Carlos Rodrigues
    • 3
  • Philippe Rozenberg
    • 4
  • Guillaume Chantre
    • 5
  • Josquin Tibbits
    • 6
  • Christine Cahalan
    • 7
  • Frédérique Pichavant
    • 8
  • Christophe Plomion
    • 1
    Email author
  1. 1.UMR 1202 BIOGECO, INRAEquipe de GénétiqueCestasFrance
  2. 2.UMR 1096 PIA, CIRADMontpellierFrance
  3. 3.Instituto Investigaçao Cientifica TropicalLisbonPortugal
  4. 4.INRA, Unité d’AméliorationGénétique et Physiologie ForestièresOlivetFrance
  5. 5.AFOCEL, Station Territoriale Sud Ouest Domaine de SivaillanMoulis en MédocFrance
  6. 6.Forest Science CentreThe University of MelbourneCreswickAustralia
  7. 7.School of Agricultural and Forest SciencesUniversity of WalesBangorUK
  8. 8.Institut du PinUniversité de Bordeaux 1TalenceFrance

Personalised recommendations