Ecological Research

, Volume 33, Issue 4, pp 723–736 | Cite as

Multiscale and age-dependent leaf nickel in the Ni-hyperaccumulator Leptoplax emarginata

  • François Bartoli
  • Mathilde Royer
  • David Coinchelin
  • Didier Le Thiec
  • Christophe Rose
  • Christophe Robin
  • Guillaume Echevarria
Special Feature Ultramafic Ecosystems: Proceedings of the 9th International Conference on Serpentine Ecology


Nickel-hyperaccumulator plants are of interest due to their potential use in agromining. We aimed to characterize leaf traits and Ni concentration variabilities occurring between individual plants, leaves of differing age or between various leaf tissues, in a single Greek population of the Ni-hyperaccumulator Leptoplax emarginata (Boiss.) O.E. Schulz. We linked these results to ecophysiological characteristics and other element concentrations at leaf and leaf tissue scales. We measured leaf gas exchanges, stomatal density, and we carried out rapid freezing and freeze-drying processes on leaf sections before microanalysis with scanning electron microscopy and energy-dispersive spectrometry. Leaf or leaf-tissue Ni concentrations were influenced by a combination of individual plant and leaf age factors. The greatest Ni concentrations were found in the highly transpiring young and thin leaves with the greatest stomatal densities. Indeed, Ni was statistically seven times more concentrated in both epidermis layers than in their bulk neighbour leaf counterparts, whatever the leaf age. In both epidermis layers, increases in the Ni–S and Mg–S correlations from the oldest leaves to the youngest ones were observed. The Mg:Ni, Ca:Ni and P:Ni mass ratios decreased from the oldest leaves to the mature leaves. We would recommend time-series characterization of leaf traits belonging to at least three plant replicates in order to take into account the allogamous character of many Ni-hyperaccumulator plants. Long-distance Ni transport via the xylem is predominant in the Ni-hyperaccumulator L. emarginata whereas a complementary redistribution via the phloem should also occur. The perspectives of this study are the validation and refinement of this process over shorter periods using relevant tracers.


Nickel hyperaccumulation Age-dependent leaves Age-dependent leaf-tissues Allogamy Transpiration 



Trust and financial support from the Université de Lorraine, ADEME and Lorraine Regional Council given to Dr. David Coinchelin for his PhD Grant were greatly appreciated. We thank Helen Selliez for improving the English. The authors deeply acknowledge their co-author, the late Dr. François Bartoli, for the many years shared in developing creative research together and for his valuable friendship.

Supplementary material

11284_2018_1594_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2107 kb)


  1. Agrawal B, Lakshmanan V, Kaushik S, Bais HP (2012) Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance. Planta 236:477–489CrossRefPubMedGoogle Scholar
  2. Alves S, Nabais C, Simões Gonçalves MDL, Correia dos Santos MM (2011) Nickel speciation in the xylem sap of the hyperaccumulator Alyssum serpyllifolium ssp. Lusitanicum growing on serpentine soils of northeast Portugal. J Plant Physiol 168:1715–1722CrossRefPubMedGoogle Scholar
  3. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  4. Bani A, Echevarria G, Mullai A, Reeves RD, Morel JL, Sulçe S (2009) Nickel hyperaccumulation by Brassicaceae in serpentine soils of Albania and Northwest Greece. Northeast Nat 16:385–404CrossRefGoogle Scholar
  5. Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediat 17:117–127CrossRefGoogle Scholar
  6. Boyd RS, Jaffré T (2009) Elemental concentrations of eleven new caledonian plant species from serpentine soils: elemental correlations and leaf-age effects. Northeast Nat 16:93–110CrossRefGoogle Scholar
  7. Boyd RS, Jaffré T, Odom JW (1999) Variation in nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica 31:403–410CrossRefGoogle Scholar
  8. Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57CrossRefGoogle Scholar
  9. Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F (2010) Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Ann Bot 106:751–767CrossRefPubMedPubMedCentralGoogle Scholar
  10. Centofanti T, Sayers Z, Cabello-Conejo M, Kidd P, Nishizawa N, Kakei Y, Davis A, Sicher R, Chaney R (2013) Xylem exudate composition and root-to-shoot nickel translocation in Alyssum species. Plant Soil 373:59–75CrossRefGoogle Scholar
  11. Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tapppero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443CrossRefPubMedGoogle Scholar
  12. Coinchelin D, Bartoli F, Robin C, Echevarria G (2012) Ecophysiology of nickel phytoaccumulation: a simplified biophysical approach. J Exp Bot 63:5815–5827CrossRefPubMedGoogle Scholar
  13. Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775CrossRefPubMedGoogle Scholar
  14. Deng THB, Tang YT, van der Ent A, Sterckeman T, Echevarria G, Morel JL, Qiu RL (2016) Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil 404:35–45CrossRefGoogle Scholar
  15. Echevarria G (2018) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals. Extracting unconventional resources using plants. Mineral Resources Series, Springer International Publishing AG, Cham, Switzerland, pp 135–156Google Scholar
  16. Ernst WHO, Krauss GJ, Verkleij JOC, Wesenberg D (2008) Interaction of heavy metals with the sulfur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143PubMedGoogle Scholar
  17. Estrade N, Cloquet C, Echevarria G, Sterckeman T, Deng THB, Tang YT, Morel JL (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423:24–25CrossRefGoogle Scholar
  18. Fernando DR, Mizuno T, Woodrow IE, Baker AJM, Collins RN (2010) Characterization of foliar manganese (Mn) in Mn hyperaccumulators using X-ray absorption spectroscopy. New Phytol 188:1014–1027CrossRefPubMedGoogle Scholar
  19. Food and Agriculture Organization of the United Nations (FAO) (2001) Lecture notes on the major soils of the world. In: Driessen P, Deckers J, Spaargaren O, Nachtergaele F (eds) World soil resources report, no. 94. FAO, RomeGoogle Scholar
  20. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt D (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191CrossRefPubMedPubMedCentralGoogle Scholar
  21. Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits AH (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506CrossRefPubMedGoogle Scholar
  23. Jaffré T, Schmid M (1974) Accumulation du nickel par une Rubiacée de Nouvelle-Calédonie, Psychotria douarrei (G. Beauvisage) Däniker. CR Acad Sci D Nat 278:1727–1730Google Scholar
  24. Kachenko AG, Siegele R, Bhatia NP, Singh B, Ionescu M (2008a) Evaluation of specimen preparation techniques for micro-PIXE localisation of elements in hyperaccumulating plants. Nucl Inst Methods Phys Res B 266:1598–1604CrossRefGoogle Scholar
  25. Kachenko AG, Singh B, Bhatia NP, Siegele R (2008b) Quantitative elemental localisation in leaves and stems of nickel hyperaccumulating shrub Hybanthus floribundus subsp. floribundus using micro-PIXE spectroscopy. Nucl Inst Methods Phys Res B 266:667–676CrossRefGoogle Scholar
  26. Koopmans GF, Römkens PFAM, Song J, Temminghoff EJM, Japenga J (2007) Predicting the phytoextration duration to remediate heavy metals contaminated soils. Wat Air Soil Poll 181:355–371CrossRefGoogle Scholar
  27. Krämer U (2010) Metal hyperaccumulation in plants. Ann Rev Plant Biol 61:517–534CrossRefGoogle Scholar
  28. Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353CrossRefPubMedPubMedCentralGoogle Scholar
  29. Küpper H, Lombi E, Zhao F-J, Wieshammer G, McGrath SP (2001) Cellular compartimentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300CrossRefPubMedGoogle Scholar
  30. Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck MH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-Ray absorption spectrometry. Plant Physiol 134:748–757CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lange B, van der Ent A, Baker AJM, Mahy G, Malaisse F, Meerts P, Echevarria G, Pourré O, Verbruggen N, Faucon MP (2017a) Copper and cobalt accumulation in plants: a critical assessment of the current status of knowledge. New Phytol 213:537–551CrossRefPubMedGoogle Scholar
  32. Lange B, Faucon MP, Delhaye G, Hamiti N, Meerts P (2017b) Functional traits of a facultative metallophyte from tropical Africa: population variation and plasticity in response to cobalt. Environ Exp Bot 136:1–8CrossRefGoogle Scholar
  33. Le Thiec D, Rose C, Garrec JP, Laffray D, Louguet P, Galaup S, Loosveldt P (1994) Alteration of element subjected to ozone fumigation and (or) water stress: X-ray microanalysis study. Can J Bot 72:86–92CrossRefGoogle Scholar
  34. Leustek T (2002) Sulfate metabolism. The Arabidopsis book 1.
  35. Leustek T, Martin MN, Bick J-A, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Ann Rev Plant Phys Plant Mol Biol 51:141–165CrossRefGoogle Scholar
  36. Li Y-M, Chaney RL, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115CrossRefGoogle Scholar
  37. McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids and radionuclides. Adv Agron 75:1–56CrossRefGoogle Scholar
  38. McNear DH, Chaney RL, Sparks DL (2010) The hyperaccumulator Allyssum murale uses complexation with nitrogen and oxygen donor ligands for Ni transport and storage. Phytochemistry 71:188–200CrossRefPubMedGoogle Scholar
  39. Mesjasz-Przybylowicz J, Przybylowicz WJ (2011) PIXE and metal hyperaccumulation: from soil to plants and insects. X-Ray Spectrom 40:181–185CrossRefGoogle Scholar
  40. Mesjasz-Przybylowicz J, Przybylowicz WJ, Pineda CA (2001) Nuclear microprobe studies of elemental distribution in apical leaves of the Ni hyperaccumulator Berkheya coddii. S Afr J Sci 97:591–593Google Scholar
  41. Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck MH, Götz B, Küpper H (2009) Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype). Plant Physiol 151:715–731CrossRefPubMedPubMedCentralGoogle Scholar
  42. Montargès-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL (2008) Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry 69:1695–1709CrossRefPubMedGoogle Scholar
  43. Nick LJ, Chambers MF (1995) Farming for metals? Mining Environ Manag 3:15–18Google Scholar
  44. Peer WA, Mahmoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulation plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol 159:421–430CrossRefGoogle Scholar
  45. Peer WA, Mahmoudian M, Freeman JL, Lahner B, Richards EL, Reeves RD, Murphy AS, Salt DE (2006) Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. New Phytol 172:248–260CrossRefPubMedGoogle Scholar
  46. Perronnet K, Schwartz C, Morel JL (2003) Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil. Plant Soil 249:19–25CrossRefGoogle Scholar
  47. Reeves RD, Brooks RR, Press JR (1980) Nickel accumulation by species of Peltaria Jacq. (Cruciferae). Taxonomy 29:629–633CrossRefGoogle Scholar
  48. Richau KH, Schat H (2009) Intraspecific variation of nickel and zinc accumulation and tolerance in the hyperaccumulator Thlaspi caerulescens. Plant Soil 314:253–262CrossRefGoogle Scholar
  49. Richau KH, Kozhevnikova AD, Seregin IV, Vooijs R, Koevoets PLM, Smith JAC, Ivanov VB, Schat H (2009) Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol 183:106–116CrossRefPubMedGoogle Scholar
  50. Robinson BH, Fernández JE, Madejón P, Marañón T, Murillo JM, Green S, Clothier B (2003a) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125CrossRefGoogle Scholar
  51. Robinson BH, Lombi E, Zhao FJ, McGrath SP (2003b) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158:279–285CrossRefGoogle Scholar
  52. Tang YT, Deng THB, Wu QH, Qiu RL, Wei ZB, Guo XF, Wu QT, Lei M, Chen TB, Echevarria G, Sterckeman T, Simonnot MO, Morel JL (2012) Designing cropping systems adapted to metal contaminated sites: a review. Pedosphere 22:470–488CrossRefGoogle Scholar
  53. Tian SK, Lu LL, Yang XE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol 182:116–126CrossRefPubMedGoogle Scholar
  54. van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780CrossRefPubMedGoogle Scholar
  55. van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861CrossRefPubMedPubMedCentralGoogle Scholar
  56. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefPubMedGoogle Scholar
  57. Vogel-Mikuš K, Regvar M, Mesjasz-Przybyłowicz J, Przybyłowicz W, Simčič J, Pelicon P, Budnar M (2008) Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol 179:712–721CrossRefPubMedGoogle Scholar
  58. Xu X, Shi J, Chen Y, Chen X, Wang H, Perera A (2006) Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceaae). Plant Soil 285:323–331CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2018

Authors and Affiliations

  1. 1.Laboratoire Sols et EnvironnementUniversité de Lorraine, INRANancyFrance
  2. 2.Laboratoire Agronomie et EnvironnementUniversité de Lorraine, INRANancyFrance
  3. 3.INRA, Université de Lorraine, Ecologie et Ecophysiologie ForestièresNancyFrance
  4. 4.INRA, EFABANancyFrance

Personalised recommendations