Ecological Research

, Volume 33, Issue 1, pp 35–49 | Cite as

TSUNAGARI: a new interdisciplinary and transdisciplinary study toward conservation and sustainable use of biodiversity and ecosystem services

  • Masahiro NakaokaEmail author
  • Kenji Sudo
  • Mizuho Namba
  • Hideaki Shibata
  • Futoshi Nakamura
  • Satoshi Ishikawa
  • Mitsutaku Makino
  • Hiroya Yamano
  • Shin-ichiro S. Matsuzaki
  • Takehisa Yamakita
  • Xiubo Yu
  • Xiyong Hou
  • Xiaowei Li
  • Jon Brodie
  • Keiichiro Kanemoto
  • Dan Moran
  • Francesca Verones
Special Feature: Current Topics in Ecology Biodiversity and Its Ecological Functions in East-Asia and Pacific Region: Status and Challenges


The expanding economical activities have accelerated losses of biodiversity and ecosystem services, which are especially pronounced in Asia. To find solutions to stop these losses, a group of scientists studying both ecological and social sciences has launched an interdisciplinary research network, entitled TSUNAGARI (Trans-System, UNified Approach for Global and Regional Integration of social-ecological study toward sustainable use of biodiversity and ecosystem services). The project is based on two main perspectives: (1) integrating different disciplines of environmental research across multiple spatial scales, and (2) evaluating the importance of ecosystem connectivity between land and ocean for biodiversity and ecosystem services. The integrative studies have been started as follows: (1) integrating global-scale analyses of biodiversity and economy by developing GIS-based footprint analysis, (2) establishing the link between the studies of local good practices of ecosystem management and life cycle assessment on ecosystem good and services, (3) linking local-scale ecosystem studies to decision making processes for sustainable society by multiple stakeholders, and (4) upscaling local analyses of ecosystem processes to broad-scale analyses of ecosystem patterns. The proposed approaches are considered effective to solve problems that impede conservation of biodiversity and sustainable use of multiple ecosystem services in various situations although we also find some gaps such as regional biases in biodiversity data and involvement of different types of stakeholders. By overcoming the major bottlenecks, we believe the new integrated approaches will promote conservation and sustainable management of biodiversity and ecosystem services research, and contribute to advance decision-making processes from local communities to international levels.


Coastal ecosystem Cross-scale integration Eastern and southeastern Asia Ecosystem connectivity Social-ecological system 



We thank all the participants of three TSUNAGARI workshops for valuable discussions from which this perspective paper was produced. We are also grateful to ILTER-EAP (Intertinal Long-term Ecological Research Network, Eastern Asia and the Pacific regional network) to consistent support throughout the research period. This research was funded by Belmont Forum Collaborative Research Action on Scenarios of Biodiversity and Ecosystem Services co-sponsored by agencies in Japan (JST), China (NSFC-BF/IGFA, No. 31461143032), Australia and Norway (10444600), and was also supported by the Environment Research and Technology Development Fund (S-15 Predicting and Assessing Natural Capital and Ecosystem Services (PANCES)) of the Ministry of the Environment, Japan.


  1. Abe S (1996) Meteorological characteristic of Kushiro region. Saihyo 42:91–94Google Scholar
  2. Bartley R, Bainbridge ZT, Lewis SE, Kroon FJ, Wilkinson SN, Brodie JE, Silburn DM (2014) Relating sediment impacts on coral reefs to watershed sources, processes and management: a review. Sci Total Environ 468–469:1138–1153. CrossRefPubMedGoogle Scholar
  3. Bateman IJ, Harwood AR, Mace GM, Watson RT, Abson DJ, Andrews B, Fezzi C (2013) Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341:45–50. CrossRefPubMedGoogle Scholar
  4. Beaugrand G, Edwards M, Raybaud V, Goberville E, Kirby RR (2015) Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat Clim Change 5:695–701. CrossRefGoogle Scholar
  5. Brandt P, Ernst A, Gralla F, Luederitz C, Lang DJ, Newig J, Reinert F, Abson DJ, von Wehrden H (2013) A review of transdisciplinary research in sustainability science. Ecol Econ 92:1–15. CrossRefGoogle Scholar
  6. Briggs JC (1995) Global biogeography. Elsevier, AmsterdamGoogle Scholar
  7. Brodie J, Pearson RG (2016) Ecosystem health of the Great Barrier Reef: time for effective management action based on evidence. Estuar Coast Shelf Sci 183:438–451. CrossRefGoogle Scholar
  8. Brodie JE, Kroon FJ, Schaffelke B, Wolanski EC, Lewis SE, Devlin MJ, Bohnet IC, Bainbridge ZT, Waterhouse J, Davis AM (2012) Terrestrial pollutant runoff to the Great Barrier Reef: an update of issues, priorities and management responses. Mar Pollut Bull 65:81–100. CrossRefPubMedGoogle Scholar
  9. Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Díaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc Natl Acad Sci USA 106:1305–1312. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 142:710–723. CrossRefGoogle Scholar
  11. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. CrossRefPubMedGoogle Scholar
  12. Cumming GS (2007) Global biodiversity scenarios and landscape ecology. Landsc Ecol 22:671–685. CrossRefGoogle Scholar
  13. Cumming GS (2011) Spatial resilience: integrating landscape ecology, resilience, and sustainability. Landsc Ecol 26:899–909. CrossRefGoogle Scholar
  14. Dayton PK (1971) Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389. CrossRefGoogle Scholar
  15. Diaz RJ, Rosenberg R (2009) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. CrossRefGoogle Scholar
  16. Dickson B, Blaney R, Miles L, Regan E, van Soesbergen A, Väänänen E, Blyth S, Harfoot M, Martin CS, McOwen C, Newbold T, van Bochove J (2014) Towards a global map of natural capital: key ecosystem assets. UNEP, NairobiGoogle Scholar
  17. Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, Magurran AE (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299. CrossRefPubMedGoogle Scholar
  18. Dίaz S, Demissew S, Carabias J, Joly C, Lonsdale M, Ash N, Larigauderie A, Adhikari JR, Arico S, Báldi A, Bartuska A, Baste IA, Bilgin A, Brondizio E, Chan KMA, Figueroa VE, Duraiappah A, Fischer M, Hill R, Koetz T, Leadley P, Lyver P, Mace GM, Martin-Lopez B, Okumura M, Pacheco D, Pascual U, Pérez ES, Reyers B, Roth E, Saito O, Scholes RJ, Sharma N, Tallis H, Thaman R, Watson R, Yahara T, Hamid ZA, Akosim C, Al-Hafedh Y, Allahverdiyev R, Amankwah E, Asah ST, Asfaw Z, Bartus G, Brooks LA, Caillaux J, Dalle G, Darnaedi D, Driver A, Erpul G, Escobar-Eyzaguirre P, Failler P, Fouda AMM, Fu B, Gundimeda H, Hashimoto S, Homer F, Lavorel S, Lichtenstein G, Mala WA, Mandivenyi W, Matczak P, Mbizvo C, Mehrdadi M, Metzger JP, Mikissa JB, Moller H, Mooney HA, Mumby P, Nagendra H, Nesshover C, Oteng-Yeboah AA, Pataki G, Roué M, Rubis J, Schultz M, Smith P, Sumaila R, Takeuchi K, Thomas S, Verma M, Yeo-Chang Y, Zlatanova D (2015) The IPBES conceptual framework—connecting nature and people. Curr Opin Environ Sustain 14:1–16. CrossRefGoogle Scholar
  19. Fang X, Hou X, Li X, Hou W, Nakaoka M, Yu X (2018) Ecological connectivity between land and sea: a review. Ecol Res 33. 10.1007/s11284-017-1549-x
  20. Galloway JN, Winiwarter W, Leip A, Leach AM, Bleeker A, Erisman JW (2014) Nitrogen footprints: past, present and future. Environ Res Lett 9:115003. CrossRefGoogle Scholar
  21. Ghermandi A, Nunes PA (2013) A global map of coastal recreation values: results from a spatially explicit meta-analysis. Ecol Econ 86:1–15. CrossRefGoogle Scholar
  22. Gregory SV, Swanson FJ, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. Bioscience 41:540–551. CrossRefGoogle Scholar
  23. Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. CrossRefPubMedGoogle Scholar
  24. Harvey BP, Gwynn-Jones D, Moore PJ (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3:1016–1030. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hertwich EG, Peters GP (2009) Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 43:6414–6420. CrossRefPubMedGoogle Scholar
  26. Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. Proc Natl Acad Sci USA 109:3232–3237. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Honda K, Kagiwada H, Takahashi N, Miyashita K (2014) Movement patterns of adult Sakhalin taimen, Parahucho perryi, between stream habitats of the Bekanbeushi River system, eastern Hokkaido, Japan. Ichthyol Res 61:142–151. CrossRefGoogle Scholar
  28. Hou XY, Wu T, Hou W, Chen Q, Wang YD, Yu LJ (2016a) Characteristics of coastline changes in mainland China since the early 1940s. Sci China Earth Sci 59:1791–1802. CrossRefGoogle Scholar
  29. Hou X, Xu X, Wu T, Li X (2016b) Change characteristics and scenario analysis of coastal wetlands in China. Wetl Sci 14:597–606. Google Scholar
  30. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg RC, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström N, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933. CrossRefPubMedGoogle Scholar
  31. Hunt DVL, Lombardi DR, Atkinson S, Barber ARG, Barnes M, Boyko CT, Brown J, Bryson J, Butler D, Caputo S, Caserio M, Coles R, Cooper RFD, Farmani F, Gaterell M, Hale J, Hales C, Hewitt CN, Jankovic L, Jefferson I, Leach J, MacKenzie AR, Memon FA, Sadler JP, Weingaertner C, Whyatt JD, Rogers CDF (2012) Scenario archetypes: converging rather than diverging themes. Sustainability 4:740–772. CrossRefGoogle Scholar
  32. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC, GenevaGoogle Scholar
  33. Ishikawa S, Watanabe K (2015) Area-capability—promoting the use of local resources. Res Inst Humanit Nat, KyotoGoogle Scholar
  34. Ishikawa S, Watanabe K, Theparoonrat Y, Amornpiyakrit T, Manajit N, Yasook N, Arnupapboon S (2015) Balancing fishery resource utilization and conservation for environmental sustainability and socio-economic stability. Fish People 13:13–20Google Scholar
  35. ISO (2006) Environmental management—life cycle assessment—principles and framework. International Standard ISO 14040. International Organisation for Standardisation. GenevaGoogle Scholar
  36. Iyobe T, Haraguchi A, Nishijima H, Tomizawa H, Nishio F (2003) Effect of fog on sea salt deposition on peat soil in boreal Picea glehnii forests in Ochiishi, eastern Hokkaido, Japan. Ecol Res 18:587–597. CrossRefGoogle Scholar
  37. Jetz W, McPherson JM, Guralnick RP (2012) Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol Evol 27:151–159. CrossRefPubMedGoogle Scholar
  38. Just RE, Natanyahu S (2012) Conflict and cooperation on trans-boundary water resources. Springer Science & Business Media, New YorkGoogle Scholar
  39. Kamauchi H, Sato S, Hayashi D, Okabe Y, Katsuyama T, Fukushima K, Yoshioka A, Sato T, Tokuchi N, Nakaoka M (2012) Consumer of salmon carcasses in early winter of Eastern Hokkaido. For Res 78:81–87Google Scholar
  40. Kim E-S, Trisurat Y, Muraoka H, Shibata H, Amoroso V, Boldgiv B, Hoshizaki K, Kassim AR, Kim Y-S, Nguyen HQ, Ohte N, Ong PS, Wang C-P (2018) The International Long-Term Ecological Research–East Asia–Pacific Regional Network (ILTER-EAP): history, development, and perspectives. Ecol Res 33.
  41. Klein CJ, Brown CJ, Halpern BS, Segan DB, McGowan J, Beger M, Watson JEM (2015) Shortfalls in the global protected area network at representing marine biodiversity. Sci Rep 5:17539. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Koch EW, Barbier EB, Silliman BR, Reed DJ, Perillo GM, Hacker SD, Granek EF, Primavera JH, Muthiga N, Polasky S, Halpern BS, Kennedy CJ, Kappel CV, Wolanski E (2009) Non-linearity in ecosystem services: temporal and spatial variability in coastal protection. Front Ecol Environ 7:29–37. CrossRefGoogle Scholar
  43. Lang DJ, Wiek A, Bergmann M, Stauffacher M, Martens P, Moll P, Swilling M, Thomas CJ (2012) Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain Sci 7(supplement 1):25–43. CrossRefGoogle Scholar
  44. Lange K, Townsend CR, Gabrielsson R, Chanut PCM, Matthaei CD (2014) Responses of stream fish populations to farming intensity and water abstraction in an agricultural catchment. Freshw Biol 59:286–299. CrossRefGoogle Scholar
  45. Lenz M, da Gama BAP, Gerner NV, Gobin J, Gröner F, Harry A, Jenkins SR, Kraufvelin P, Mummelthei C, Sareyka J, Xavier EA, Wahl M (2011) Non-native marine invertebrates are more tolerant towards environmental stress than taxonomically related native species: results from a globally replicated study. Environ Res 111:529–943. CrossRefGoogle Scholar
  46. Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012) International trade drives biodiversity threats in developing nations. Nature 486:109–112. CrossRefPubMedGoogle Scholar
  47. Li X, Xiubo Y, Jiang L, Li W, Liu Yu, Hou X (2014) How important are the wetlands in the middle-lower Yangtze River region: an ecosystem service valuation approach. Ecosyst Serv 10:54–60. CrossRefGoogle Scholar
  48. Li X, Hou X, Xianghong D, Su H (2016) Effects of land use change on imbalance in ecosystem services: a case study of Laizhou Bay Coastal Zone. Sci Geogr Sin 36:1197–1204. Google Scholar
  49. Maass M, Balvanera P, Baudry J, Bourgeron P, Dick J, Equihua M, Forsius M, Halada L, Krauze K, Nakaoka M, Orenstein DE, Parr T, Redman CL, Rozzi R, Santos-Reis M, Swemmer T, Vădineanu A (2016) Changes in biodiversity and trade-offs among ecosystem services, stakeholders and components of well-being: the contribution of the International Long-Term Ecological Research network (ILTER) to Programme on Ecosystem Change and Society (PECS). Ecol Soc 21:31. CrossRefGoogle Scholar
  50. Meyer C, Kreft H, Guralnick R, Jetz W (2015) Global priorities for an effective information basis of biodiversity distributions. Nat Commun 6:8221. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: our human planet. Island Press, WashingtonGoogle Scholar
  52. Molinos JG, Halpern BS, Schoeman DS, Brown CJ, Kiessling W, Moore PJ, Pandolfi JM, Poloczanska ES, Richardson AJ, Burrows MT (2016) Climate velocity and the future global redistribution of marine biodiversity. Nat Clim Change 6:83–88. CrossRefGoogle Scholar
  53. Moran D, Kanemoto K (2017) Identifying the species threat hotspots from global supply chains. Nat Ecol Evol 1:23. CrossRefPubMedGoogle Scholar
  54. Moran D, Petersone M, Verones F (2016) On the suitability of input–output analysis for calculating product-specific biodiversity footprints. Ecol Indic 60:192–201. CrossRefGoogle Scholar
  55. Mukai H (2005) Seagrass bed ecosystem in a total system of land-and coastal marine ecosystems. Gekkan Kaiyo 37:148–155Google Scholar
  56. Mukai H, Iizumi H, Kishi M (2002) Material input from terrestrial areas under regular and irregular conditions in Akkeshi watershed: a case study linking forest and sea. Gekkan Kaiyo 34:449–457Google Scholar
  57. Nakamura F, Kameyama S, Mizugaki S (2004) Rapid shrinkage of Kushiro Mire, the largest mire in Japan, due to increased sedimentation associated with land-use development in the catchment. Catena 55:213–229. CrossRefGoogle Scholar
  58. Nakaoka M, Lee K-S, Huang X, Almonte T, Sidik Bujang J, Kiswara W, Ambo Rappe R, Maryam Yaakub S, Prabhakaran MP, Abu Hena MK, Hori M, Zhang P, Prathep A, Fortes MD (2014) Regional comparison of the ecosystem services from seagrass beds in Asia. In: Nakano S et al (eds) Asia-Pacific biodiversity observation network: integrative observations and assessments. Ecological research monographs. Springer, Tokyo, pp 367–391Google Scholar
  59. Noda T (2004) Spatial hierarchal approach in community ecology: a way beyond a low predictability in local phenomenon. Popul Ecol 46:105–117. CrossRefGoogle Scholar
  60. Nordlund LM, Koch EW, Barbier EB, Creed JC (2016) Seagrass ecosystem services and their variability across genera and geographical regions. PLoS One 11:e0163091. CrossRefGoogle Scholar
  61. Oita A, Malik A, Kanemoto K, Geschke A, Nishijima S, Lenzen M (2016) Substantial nitrogen pollution embedded in international trade. Nat Geosci 9:111–115. CrossRefGoogle Scholar
  62. Omija T (2004) Terrestrial inflow of soils and nutrients. In: Ministry of the Environment, Japanese Coral Reef Society (eds) Coral reefs of Japan. Ministry of the Environment, Tokyo, pp 64–68Google Scholar
  63. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325:419–422. CrossRefPubMedGoogle Scholar
  64. Paerl HW, Hall NS, Peierls BL, Rossignol KL (2014) Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuar Coast 37:243–258. CrossRefGoogle Scholar
  65. Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75. CrossRefGoogle Scholar
  66. Palumbi SR, Pinsky ML (2014) Marine dispersal, ecology and conservation. In: Bertness MD, Bruno JF, Silliman BR, Stachowics JJ (eds) Marine community ecology and conservation. Sinauer, Sunderland, pp 57–83Google Scholar
  67. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. CrossRefPubMedGoogle Scholar
  68. Peterson DL, Parker VT (1998) Ecological scale. Columbia University Press, New YorkGoogle Scholar
  69. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316. CrossRefGoogle Scholar
  70. Pörtner HO, Langenbuch M (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res 110:C09S10. CrossRefGoogle Scholar
  71. Qiu J, Turner MG (2013) Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc Natl Acad Sci USA 110:12149–12154. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466. CrossRefPubMedGoogle Scholar
  73. Sawai T (1988) Sea fog in Kushiro District. Tenki 35:555–566Google Scholar
  74. Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci USA 99:15497–15500. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininmonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Edgar GJ (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501:539–542. CrossRefPubMedGoogle Scholar
  76. Tajima H, Tamaru O, Makino M (2015) Stakeholder analysis for the comparison of the interests structures around seagrass beds. J Coast Zone Stud 27:77–88Google Scholar
  77. Takeuchi N, Okubo M, Furumoto H, Omaki H (1982) Meteorology of Shibecha. In: Reports on University Forest, Faculty of Agriculture, Kyoto University, vol 15, pp 35–42Google Scholar
  78. Tanaka Y, Go GA, Watanabe A, Miyajima T, Nakaoka M, Uy WH, Nadaoka K, Watanabe S, Fortes MD (2014) 17-year change in species composition of mixed seagrass beds around Santiago Island, Bolinao, the northwestern Philippines. Mar Pollut Bull 88:81–85. CrossRefPubMedGoogle Scholar
  79. Thorburn PJ, Wilkinson SN, Silburn DM (2013) Water quality in agricultural lands draining to the Great Barrier Reef: a review of causes, management and priorities. Agric Ecosyst Environ 180:4–20. CrossRefGoogle Scholar
  80. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1102. CrossRefPubMedGoogle Scholar
  81. Ueno Y, Hori M, Noda T, Mukai H (2006) Effects of material inputs by the Grey Heron Ardea cinerea on forest-floor necrophagous insects and understory plants in the breeding colony. Ornithol Sci 5:199–209.[199:EOMIBT]2.0.CO;2Google Scholar
  82. United Nations (2015) Transforming our world: the 2030 agenda for sustainable development. (GA A/RES/70/1). Accessed 11 July 2017
  83. Verones F, Bolowich AF, Ebata K, Boutson A, Arimoto T, Ishikawa S (2017a) A case study of life cycle impacts of small-scale fishing techniques in Thailand. Cogent Environ Res 3:1387959. Google Scholar
  84. Verones F, Moran D, Stadler K, Kanemoto K, Wood R (2017b) Resource footprints and their ecosystem consequences. Sci Rep 7:40743. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Vitousek PM, Naylor R, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520. CrossRefPubMedGoogle Scholar
  86. Waterhouse J, Brodie J, Lewis S, Audas DM (2016) Land-sea connectivity, ecohydrology and holistic management of the Great Barrier Reef and its catchments: time for a change. Ecohydrol Hydrobiol 16:45–57. CrossRefGoogle Scholar
  87. Weinzettel J, Hertwich EG, Peters GP, Steen-Olsen K, Galli A (2013) Affluence drives the global displacement of land use. Glob Environ Chang 23:433–438. CrossRefGoogle Scholar
  88. Yamakita T, Wanatabe K, Nakaoka M (2011) Asynchronous local dynamics contributes to stability of a seagrass bed in Tokyo Bay. Ecography 34:519–528. CrossRefGoogle Scholar
  89. Yamakita T, Sudo K, Jintsu-Uchifune Y, Yamamoto H, Shirayama Y (2017) Identification of important marine areas using ecologically or biologically significant areas (EBSAs) criteria in the east to southeast Asia region and comparison with existing registered areas for the purpose of conservation. Mar Policy 81:273–284. CrossRefGoogle Scholar
  90. Yamano H, Satake K, Inoue T, Kadoya T, Hayashi S, Kinjo K, Nakajima D, Oguma H, Ishiguro S, Okagawa A, Suga S, Horie T, Nohara K, Fukayama N, Hibiki A (2015) An integrated approach to tropical and subtropical island conservation. J Ecol Environ 38:271–279. CrossRefGoogle Scholar
  91. Yara Y, Vogt M, Fujii M, Yamano H, Hauri C, Steinacher M, Gruber N, Yamanaka Y (2012) Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan. Biogeosciences 9:4955–4968. CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2017

Authors and Affiliations

  • Masahiro Nakaoka
    • 1
    Email author return OK on get
  • Kenji Sudo
    • 1
    • 2
  • Mizuho Namba
    • 1
    • 2
  • Hideaki Shibata
    • 3
  • Futoshi Nakamura
    • 4
  • Satoshi Ishikawa
    • 5
  • Mitsutaku Makino
    • 6
  • Hiroya Yamano
    • 7
  • Shin-ichiro S. Matsuzaki
    • 7
  • Takehisa Yamakita
    • 8
  • Xiubo Yu
    • 9
  • Xiyong Hou
    • 10
  • Xiaowei Li
    • 10
  • Jon Brodie
    • 11
  • Keiichiro Kanemoto
    • 12
  • Dan Moran
    • 13
  • Francesca Verones
    • 13
  1. 1.Akkeshi Marine Station, Field Science Center for Northern BiosphereHokkaido UniversityAkkeshiJapan
  2. 2.Graduate School of Environmental Science, Akkeshi Marine Station, Field Science Center for Northern BiosphereHokkaido UniversityAkkeshiJapan
  3. 3.Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
  4. 4.Graduate School of AgricultureHokkaido UniversitySapporoJapan
  5. 5.Research Institute for Humanity and NatureKyotoJapan
  6. 6.Fisheries Research and Education AgencyYokohamaJapan
  7. 7.National Institute for Environmental StudiesTsukubaJapan
  8. 8.Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
  9. 9.Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingP.R. China
  10. 10.Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiP.R. China
  11. 11.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  12. 12.Faculty of Economics and LawShinshu UniversityMatsumotoJapan
  13. 13.Industrial Ecology Programme, Department of Energy and Process EngineeringNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations