Ecological Research

, Volume 32, Issue 6, pp 861–871 | Cite as

Integrating isotopic, microbial, and modeling approaches to understand methane dynamics in a frequently disturbed deep reservoir in Taiwan

  • Masayuki Itoh
  • Hisaya Kojima
  • Pei-Chi Ho
  • Chun-Wei Chang
  • Tzong-Yueh Chen
  • Silver Sung-Yun Hsiao
  • Yuki Kobayashi
  • Megumu Fujibayashi
  • Shuh-Ji Kao
  • Chih-hao Hsieh
  • Manabu Fukui
  • Noboru Okuda
  • Takeshi Miki
  • Fuh-Kwo Shiah
Special Feature: Original Article Filling the gaps

Abstract

It has been estimated that more than 48% of global methane emissions from lakes and reservoirs occur at low latitudes (<24°). To improve this estimate, knowledge regarding underexplored ecosystems, particularly deep lakes and reservoirs in Asian monsoon regions, is needed because the magnitude of methane emissions is influenced by lake bathymetry and climatic conditions. We conducted long-term studies beginning in 2004 at Feitsui Reservoir (FTR) in Taiwan, a subtropical monomictic system with a maximum depth of 120 m to monitor seasonal and interannual variations of three key characteristics and to understand the mechanisms underlying these variations. Key characteristics investigated were as follows: (1) the balance of primary production and heterotrophic respiration as a determinant of vertical oxygen distribution, (2) methane production at the bottom of the reservoir, oxidation in the water column, and emissions from the lake surface, and (3) the contribution of methane-originated carbon to the pelagic food web through methane-oxidizing bacteria (MOB). This review highlights major achievements from FTR studies integrating isotopic, microbial, and modeling approaches. Based on our findings, we proposed two conceptual models: (1) a model of methane dynamics, which addresses the differences in methane emission mechanisms between deep and shallow lakes, and (2) a spatially explicit model linking benthic methane production to the pelagic food web, which addresses the diversity of MOB metabolisms and their dependence on oxygen availability. Finally, we address why long-term studies of subtropical lakes and reservoirs are important for better understanding the effects of climate on low- to mid-latitude ecosystems.

Keywords

Methane production Methane oxidizing bacteria Food web model Isotope ecology Environmental microbiology 

Notes

Acknowledgements

N. O. is supported by a JSPS Grant-in aid (no. 24405007 and 16H05774) and RIHN Project (D-06-14200119). This study was conducted under the Joint Research Program of the Institute of Low Temperature Science, Hokkaido University. T. M. was supported by MOST 103 - 2621 - M - 002 - 015 -.

References

  1. Abril G, Guerin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos MA, Matvienko B (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob Biogeochem Cycles 19:Gb4007. doi: 10.1029/2005gb002457 CrossRefGoogle Scholar
  2. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles. doi: 10.1029/2004gb002238 Google Scholar
  3. Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and methane emissions. J Geophys Res. doi: 10.1029/2007jg000608 Google Scholar
  4. Bastviken D, Santoro AL, Marotta H, Pinho LQ, Calheiros DF, Crill P, Enrich-Prast A (2010) Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environ Soc Technol 44:5450–5455. doi: 10.1021/es1005048 CrossRefGoogle Scholar
  5. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50. doi: 10.1126/science.1196808 CrossRefPubMedGoogle Scholar
  6. Bates TS, Kelly KC, Johnson JE, Gammon RH (1996) A reevaluation of the open ocean source of methane to the atmosphere. J Geophys Res Atmos 101:6953–6961. doi: 10.1029/95JD03348 CrossRefGoogle Scholar
  7. Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN (2011) Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep 3:36–46. doi: 10.1111/j.1758-2229.2010.00180.x CrossRefPubMedGoogle Scholar
  8. Bogard MJ, del Giorgio PA, Boutet L, Chaves MC, Prairie YT, Merante A, Derry AM (2014) Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun 5:5350. doi: 10.1038/ncomms6350 CrossRefPubMedGoogle Scholar
  9. Borges AV, Abril G, Delille B, Descy JP, Darchambeau F (2011) Diffusive methane emissions to the atmosphere from Lake Kivu (Eastern Africa). J Geophys Res Biogeosci. doi: 10.1029/2011jg001673 Google Scholar
  10. Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T, Morana C, Okuku E, Bouillon S (2015a) Globally significant greenhouse gas emissions from African inland waters. Nat Geosci 8:637–642. doi: 10.1038/NGEO2486 CrossRefGoogle Scholar
  11. Borges AV, Abril G, Darchambeau F, Teodoru CR, Deborde J, Vidal LO, Lambert T, Bouillon S (2015b) Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers. Sci Rep 5:15614. doi: 10.1038/srep15614 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Borges AV, Champenois W, Gypens N, Delille B, Harlay J (2016) Massive marine methane emissions from near-shore shallow coastal areas. Sci Rep 6:27908. doi: 10.1038/srep27908 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Borges AV, Speeckaert G, Champenois A, Scranton MI, Gypens N (2017) Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the Southern Bight of the North Sea. Ecosystems. doi: 10.1007/s10021-017-0171-7 Google Scholar
  14. Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel J-P, Peyret P, Fonty G, Lehours A-C (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832–847CrossRefPubMedGoogle Scholar
  15. Chang SP, Wen CG (1997) Changes in water quality in the newly impounded subtropical Feitsui Reservoirs, Taiwan. J Am Water Resour Assoc 33:343–357CrossRefGoogle Scholar
  16. Chanudet V, Descloux S, Harby A, Sundt H, Hansen BH, Brakstad O, Serca D, Guerin F (2011) Gross CO2 and methane emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Sci Total Environ 409:5382–5391. doi: 10.1016/j.scitotenv.2011.09.018 CrossRefPubMedGoogle Scholar
  17. Ciais P, Sabine C, Govindasamy B, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni R, Piao S, Thornton P (2013) Chapter 6: carbon and other biogeochemical cycles. In: Stocker T, Qin D, Platner G-K (eds) Climate change 2013 the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  18. Currie DJ, Kalff J (1984) A comparision of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol Oceanogr 29:298–310CrossRefGoogle Scholar
  19. Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. doi: 10.1038/nclimate1633 CrossRefGoogle Scholar
  20. Damm E, Kiene RP, Schwarz J, Falck E, Dieckmann G (2008) Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Mar Chem 109:45–59CrossRefGoogle Scholar
  21. Deines P, Fink P (2011) The potential of methanotrophic bacteria to compensate for food quantity or food quality limitations in Daphnia. Aquat Microb Ecol 65:197–206CrossRefGoogle Scholar
  22. Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci USA 111:18273–18278. doi: 10.1073/pnas.1411617111 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Eckert W, Conrad R (2007) Sulfide and methane evolution in the hypolimnion of a subtropical lake: a three-year study. Biogeochemistry 82:67–76. doi: 10.1007/s10533-006-9053-3 CrossRefGoogle Scholar
  24. Encinas Fernández J, Peeters F, Hofmann H (2016) On the methane paradox: transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes. J Geophys Res Biogeosci 121:2717–2726. doi: 10.1002/2016JG003586 CrossRefGoogle Scholar
  25. Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MS, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662. doi: 10.1128/AEM.00067-09 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548. doi: 10.1038/nature08883 CrossRefPubMedGoogle Scholar
  27. Fan C-W, Kao S-J (2008) Effects of climate events driven hydrodynamics on dissolved oxygen in a subtropical deep reservoir in Taiwan. Sci Total Environ 393:326–332. doi: 10.1016/j.scitotenv.2007.12.018 CrossRefPubMedGoogle Scholar
  28. Guérin F, Abril G (2007) Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J Geophys Res. doi: 10.1029/2006jg000393 Google Scholar
  29. Hamdan LJ, Wickland KP (2016) Methane emissions from oceans, coasts, and freshwater habitats: new perspectives and feedbacks on climate. Limnol Oceanogr 61:S3–S12CrossRefGoogle Scholar
  30. Harrits SM, Hanson RS (1980) Stratification of aerobic methane-oxidizing organisms in Lake Mendota, Madison, Wisconsin. Limnol Oceanogr 25:412–421CrossRefGoogle Scholar
  31. Ho P-C, Okuda N, Miki T, Itoh M, Shiah F-K, Chang C-W, Hsiao SS-Y, Kao S-J, Fujibayashi M, Hsieh C-H (2016) Summer profundal hypoxia determines the coupling of methanotrophic production and the pelagic food web in a subtropical reservoir. Freshw Biol 61:1694–1706. doi: 10.1111/fwb.12809 CrossRefGoogle Scholar
  32. Huttunen JT, Alm J, Liikanen A, Juutinen S, Larmola T, Hammar T, Silvola J, Martikainen PJ (2003) Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52:609–621. doi: 10.1016/S0045-6535(03)00243-1 CrossRefPubMedGoogle Scholar
  33. Im J, Lee S-W, Yoon S, DiSpirito AA, Semrau JD (2011) Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep 3:174–181. doi: 10.1111/j.1758-2229.2010.00204.x CrossRefPubMedGoogle Scholar
  34. Itoh M, Kobayashi Y, Chen T-Y, Tokida T, Fukui M, Kojima H, Miki T, Tayasu I, Shiah F-K, Okuda N (2015) Effect of interannual variation in winter vertical mixing on methane dynamics in a subtropical reservoir. J Geophys Res Biogeosci 120:1246–1261. doi: 10.1002/2015JG002972 CrossRefGoogle Scholar
  35. Jones RI, Grey J (2011) Biogenic methane in freshwater food webs. Freshw Biol 56:213–229. doi: 10.1111/j.1365-2427.2010.02494.x CrossRefGoogle Scholar
  36. Ká Norði, Thamdrup B (2014) Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim Cosmochim Acta 132:141–150. doi: 10.1016/j.gca.2014.01.032 CrossRefGoogle Scholar
  37. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GAN, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck DAC, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785. doi: 10.1038/ncomms3785 CrossRefPubMedGoogle Scholar
  38. Karl DM, Beversdorf L, Bjorkman KM, Church MJ, Martinez A, DeLong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478CrossRefGoogle Scholar
  39. Kits KD, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232. doi: 10.1111/1462-2920.12772 CrossRefPubMedGoogle Scholar
  40. Kiyashko SI, Narita T, Wada E (2001) Contribution of methanotrophs to freshwater macroinvertebrates: evidence from stable isotope ratios. Aquat Microbiol Ecol 24:203–207CrossRefGoogle Scholar
  41. Kling GW, Kipphut GW, Miller MC (1992) The flux of CO2 and methane from lakes and rivers in Arctic Alaska. Hydrobiologia 240:23–36. doi: 10.1007/Bf00013449 CrossRefGoogle Scholar
  42. Ko C-Y, Lai C-C, Chen T-Y, Hsu H-H, Shiah F-K (2016) Typhoon effects on phytoplankton responses in a semi-closed freshwater ecosystem. Mar Freshw Res 67:546–555. doi: 10.1071/MF14294 CrossRefGoogle Scholar
  43. Ko C-Y, Lai C-C, Hsu H-H, Shiah F-K (2017) Decadal phytoplankton dynamics in response to episodic climatic disturbances in a subtropical deep freshwater ecosystem. Water Res 109:102–113. doi: 10.1016/j.watres.2016.11.011 CrossRefPubMedGoogle Scholar
  44. Kobayashi Y, Kojima H, Itoh M, Okuda N, Fukui M, Shiah F-K (2016) Abundance of planktonic methane-oxidizing bacteria in a subtropical reservoir. Plankton Benthos Res 11:144–146. doi: 10.3800/pbr.11.144 CrossRefGoogle Scholar
  45. Kojima H, Tokizawa R, Kogure K, Kobayashi Y, Itoh M, Shiah FK, Okuda N, Fukui M (2014) Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer. Sci Rep 4:5728. doi: 10.1038/srep05728 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Laurion I, Vincent WF, MacIntyre S, Retamal L, Dupont C, Francus P, Pienitz R (2010) Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 55:115–133. doi: 10.4319/lo.2010.55.1.0115 CrossRefGoogle Scholar
  47. Lofton DD, Whalen SC, Hershey AE (2014) Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes. Hydrobiologia 721:209–222. doi: 10.1007/s10750-013-1663-x CrossRefGoogle Scholar
  48. Marotta H, Pinho L, Gudasz C, Bastviken D, Tranvik LJ, Enrich-Prast A (2014) Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat Clim Change 4:467–470. doi: 10.1038/Nclimate2222 CrossRefGoogle Scholar
  49. Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys Res Lett 32:L18719. doi: 10.1029/2005gl023680 CrossRefGoogle Scholar
  50. Michmerhuizen CM, Striegl RG, McDonald ME (1996) Potential methane emission from north-temperate lakes following ice melt. Limnol Oceanogr 41:985–991. doi: 10.4319/lo.1996.41.5.0985 CrossRefGoogle Scholar
  51. Morana C, Borges AV, Roland FAE, Darchambeau F, Descy J-P, Bouillion S (2015) Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa). Biogeosciences 12:2077–2088CrossRefGoogle Scholar
  52. Murase J, Sakai Y, Kametani A, Sugimoto A (2005) Dynamics of methane in mesotrophic Lake Biwa, Japan. Ecol Res 20:377–385. doi: 10.1007/s11284-005-0053-x CrossRefGoogle Scholar
  53. Okuda N, Sakai Y, Fukumori K, Yang S-M, Hsieh C-H, Shiah F-K (2017) Food web properties of the recently constructed, deep subtropical Fei-Tsui Reservoir in comparison with the ancient Lake Biwa. Freshw Biol. doi: 10.1007/s10750-017-3258-4 (in print) Google Scholar
  54. Ostrom NE, Russ ME, Field A, Piwinski L, Twiss MR, Carrick HJ (2005) Ratios of community respiration to photosynthesis and rates of primary production in Lake Erie via oxygen isotope techniques. J Great Lakes Res 31:138–153. doi: 10.1016/S0380-1330(05)70310-5 CrossRefGoogle Scholar
  55. Pacheco FS, Roland F, Downing JA (2013) Eutrophication reverses whole-lake carbon budgets. Inland Waters 4:41–48CrossRefGoogle Scholar
  56. Pasche N, Schmid M, Vazquez F, Schubert CJ, Wuest A, Kessler JD, Pack MA, Reeburgh WS, Burgmann H (2011) Methane sources and sinks in Lake Kivu. J Geophys Res Biogeosci 116:G03006. doi: 10.1029/2011jg001690 CrossRefGoogle Scholar
  57. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921. doi: 10.1038/nature04617 CrossRefPubMedGoogle Scholar
  58. Rasigraf O, Kool DM, Jetten MSM, Sinninghe Damsté JS, Ettwig KF (2014) Autotrophic carbon dioxide fixation via the calvin-benson-bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 80:2451–2460. doi: 10.1128/aem.04199-13 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rhee TS, Kettle AJ, Andreae MO (2009) Methane and nitrous oxide emissions from the ocean: a reassessment using basin-wide observations in the Atlantic. J Geophys Res Atmos. doi: 10.1029/2008JD011662 Google Scholar
  60. Roland FAE, Darchambeau F, Morana C, Bouillon S, Borges AV (2017) Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium). Chemosphere 168:756–764CrossRefPubMedGoogle Scholar
  61. Rudd JWM (1980) Methane oxidation in Lake Tanganyika (East-Africa). Limnol Oceanogr 25:958–963CrossRefGoogle Scholar
  62. Sahoo GB, Schladow SG (2008) Impacts of climate change on lakes and reservoirs dynamics and restoration policies. Sustain Sci 3:189–199. doi: 10.1007/s11625-008-0056-y CrossRefGoogle Scholar
  63. Schindler DE, Scheuerell MD (2002) Habitat coupling in lake ecosystems. Oikos 98:177–189. doi: 10.1034/j.1600-0706.2002.980201.x CrossRefGoogle Scholar
  64. Shiah F-K, Chung S-W, Kao S-J, Gong G-C, Liu K-K (2000) Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait. Cont Shelf Res 20:2029–2044. doi: 10.1016/S0278-4343(00)00055-8 CrossRefGoogle Scholar
  65. Taipale S, Kankaala P, Hämäläinen H, Jones RI (2009) Seasonal shifts in the diet of lake zooplankton revealed by phospholipid fatty acid analysis. Freshw Biol 54:90–104. doi: 10.1111/j.1365-2427.2008.02094.x CrossRefGoogle Scholar
  66. Taipale S, Kankaala P, Hahn MW, Jones RI, Tiirola M (2011) Methane-oxidizing and photoautotrophic bacteria are major producers in a humic lake with a large anoxic hypolimnion. Aquat Microb Ecol 64:81–95CrossRefGoogle Scholar
  67. Tanaka Y, Tsuda R (1996) Daily fluctuations in thermal stratification, chlorophyll a, turbidity and dissolved oxygen concentration in Lake Biwa. Jpn J Limnol 57:377–393. doi: 10.3739/rikusui.57.377 CrossRefGoogle Scholar
  68. Tang KW, McGinnis DF, Frindte K, Brüchert V, Grossart H-P (2014) Paradox reconsidered: methane oversaturation in well-oxygenated lake waters. Limnol Oceanogr 59:275–284CrossRefGoogle Scholar
  69. Tang KW, McGinnis DF, Ionescu D, Grossart H-P (2016) Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ Sci Technol Lett 3:227–233. doi: 10.1021/acs.estlett.6b00150 CrossRefGoogle Scholar
  70. Thingstad TF, Hagström Å, Rassoulzadegan F (1997) Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop? Limnol Oceanogr 42:398–404. doi: 10.4319/lo.1997.42.2.0398 CrossRefGoogle Scholar
  71. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314. doi: 10.4319/lo.2009.54.6_part_2.2298 CrossRefGoogle Scholar
  72. Tseng YF, Hsu TC, Chen YL, Kao SJ, Wu JT, Lu JC, Lai CC, Kuo HY, Lin CH, Yamamoto Y, Xiao T, Shiah FK (2010) Typhoon effects on DOC dynamics in a phosphate-limited reservoir. Aquat Microbial Ecol 60:247–260. doi: 10.3354/ame01423 CrossRefGoogle Scholar
  73. Tsuchiya K, Kuwahara VS, Hamasaki K, Tada Y, Ichikawa T, Yoshiki T, Nakajima R, Imai A, Shimode S, Toda T (2015) Typhoon-induced response of phytoplankton and bacteria in temperate coastal waters. Estuar Coast Shelf Sci 167(12):458–465. doi: 10.1016/j.ecss.2015.10.026 CrossRefGoogle Scholar
  74. Utsumi M, Nojiri Y, Nakamura T, Nozawa T, Otsuki A, Seki H (1998) Oxidation of dissolved methane in a eutrophic, shallow lake: lake Kasumigaura, Japan. Limnol Oceanogr 43:471–480CrossRefGoogle Scholar
  75. Vadstein O (2000) Heterotrophic, planktonic bacteria and cycling of phosphorus. Adv Microbiol 16:115–167Google Scholar
  76. Vecherskaya M, Dijkema C, Saad HR, Stams AJM (2009) Microaerobic and anaerobic metabolism of a Methylocystis parvus strain isolated from a denitrifying bioreactor. Environ Microbiol Rep 1:442–449. doi: 10.1111/j.1758-2229.2009.00069.x CrossRefPubMedGoogle Scholar
  77. Verburg P, Hecky RE, Kling H (2003) Ecological consequences of a century of warming in Lake Tanganyika. Science 301:505–507. doi: 10.1126/science.1084846 CrossRefPubMedGoogle Scholar
  78. Wetzel RG (1990) Land water interfaces: metabolic and limnological regulators. Verh Int Ver Limnol 24(6):24Google Scholar
  79. Wilhelm S, Adrian R (2008) Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw Biol 53:226–237. doi: 10.1111/j.1365-2427.2007.01887.x CrossRefGoogle Scholar
  80. Yao M, Henny C, Maresca JA (2016) Freshwater bacteria release methane as a by-product of phosphorus acquisition. Appl Environ Microbiol 82:6994–7003. doi: 10.1128/aem.02399-16 CrossRefPubMedCentralGoogle Scholar
  81. Yoshimizu C, Yoshiyama K, Tayasu I, Koitabashi T, Nagata T (2010) Vulnerability of a large monomictic lake (Lake Biwa) to warm winter event. Limnology 11:233–239. doi: 10.1007/s10201-009-0307-3 CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2017

Authors and Affiliations

  • Masayuki Itoh
    • 1
  • Hisaya Kojima
    • 2
  • Pei-Chi Ho
    • 3
    • 4
  • Chun-Wei Chang
    • 3
    • 4
  • Tzong-Yueh Chen
    • 5
  • Silver Sung-Yun Hsiao
    • 6
  • Yuki Kobayashi
    • 7
  • Megumu Fujibayashi
    • 8
  • Shuh-Ji Kao
    • 9
  • Chih-hao Hsieh
    • 10
    • 11
    • 12
    • 13
  • Manabu Fukui
    • 2
  • Noboru Okuda
    • 14
  • Takeshi Miki
    • 10
    • 12
  • Fuh-Kwo Shiah
    • 5
    • 10
    • 12
  1. 1.Center for Southeast Asian StudiesKyoto UniversityKyotoJapan
  2. 2.The Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
  3. 3.Earth System Sciences Program, Taiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
  4. 4.Earth System Sciences Program, Taiwan International Graduate ProgramNational Central UniversityTaoyuanTaiwan
  5. 5.Institute of Marine Environment and EcologyNational Taiwan Ocean UniversityKeelungTaiwan
  6. 6.Institute of Earth ScienceAcademia SinicaTaipeiTaiwan
  7. 7.Faculty of Health SciencesYamaguchi University Graduate School of MedicineUbeJapan
  8. 8.Department of Biological EnvironmentAkita Prefectural UniversityAkitaJapan
  9. 9.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenPeople’s Republic of China
  10. 10.Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan
  11. 11.Institute of Ecology and Evolutionary Biology, Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
  12. 12.Research Center for Environmental ChangesAcademia SinicaTaipeiTaiwan
  13. 13.National Center for Theoretical SciencesTaipeiTaiwan
  14. 14.Research Institute for Humanity and NatureKyotoJapan

Personalised recommendations