Ecological Research

, Volume 32, Issue 4, pp 523–535 | Cite as

Spatio-temporal patterns of grassland evapotranspiration and water use efficiency in arid areas

Original Article

Abstract

Understanding spatio-temporal patterns of grassland evapotranspiration (ET) and water use efficiency (WUE) in arid areas is important for livestock production and ecological conservation. Xinjiang, China, was used as an example in the Biome-BGC model to explore spatio-temporal patterns of grassland ET and WUE from 1979 to 2012 in arid areas. The ET ranked from high to low as follows: among seasons, summer (142.4 mm), spring (49.7 mm), autumn (45.9 mm) and winter (7.7 mm); among regions, the Tianshan Mountains (357.9 mm), northern Xinjiang (221.3 mm) and southern Xinjiang (183.2 mm); among grassland types, mid-mountain meadow (387.7 mm), swamp meadow (358.3 mm), typical grassland (343.9 mm), desert grassland (236.2 mm), alpine meadow (229.7 mm), and saline meadow (154.7 mm). The WUE ranked from high to low as follows: among seasons, summer (0.60 g C kg H2O−1), autumn (0.48 g C kg H2O−1) and spring (0.43 g C kg H2O−1); among regions, northern Xinjiang (0.73 g C kg H2O−1), the Tianshan Mountains (0.69 g C kg H2O−1) and southern Xinjiang (0.26 g C kg H2O−1); among grassland types, mid-mountain meadow (0.86 g C kg H2O−1), typical grassland (0.84 g C kg H2O−1), swamp meadow (0.77 g C kg H2O−1), saline meadow (0.52 g C kg H2O−1), alpine grassland (0.37 g C kg H2O−1) and desert grassland (0.34 g C kg H2O−1). In Xinjiang grasslands, the spatio-temporal ET patterns were more strongly influenced by precipitation than by temperature, whereas most high WUE values occurred when precipitation and temperature were relatively conducive to grass growth.

Keywords

Evapotranspiration Water use efficiency Arid area Biome-BGC Spatio-temporal pattern 

Notes

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 4127126), the National Basic Research Program of China (Grant No. 2014CB460603) and the Project of the State Key Laboratory of Desert and Oasis Ecology (Grant No. Y471163).

References

  1. Abdalla K, Chivenge P, Everson C, Mathieu O, Thevenot M, Chaplot V (2016) Long-term annual burning of grassland increases CO2 emissions from soils. Geoderma 282:80–86. doi: 10.1016/j.geoderma.2016.07.009 CrossRefGoogle Scholar
  2. Baeza S, Lezama F, Pineiro G, Altesor A, Paruelo JM (2010) Spatial variability of above-ground net primary production in Uruguayan grasslands: a remote sensing approach. Appl Veg Sci 13:72–85. doi: 10.1111/j.1654-109X.2009.01051.x CrossRefGoogle Scholar
  3. Beer C, Ciais P, Reichstein M, Baldocchi D, Law BE, Papale D, Soussana JF, Ammann C, Buchmann N, Frank D, Gianelle D, Janssens IA, Knohl A, Kostner B, Moors E, Roupsard O, Verbeeck H, Vesala T, Williams CA, Wohlfahrt G (2009) Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob Biogeochem Cycles. doi: 10.1029/2008gb003233 Google Scholar
  4. Bonan GB, Levis S, Sitch S, Vertenstein M, Oleson KW (2003) A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Change Biol 9:1543–1566. doi: 10.1046/j.1365-2486.2003.00681.x CrossRefGoogle Scholar
  5. Brito P, Grams TEE, Matysssek R, Jimenez MS, Gonzalez-Rodriguez AM, Oberhuber W, Wieser G (2016) Increased water use efficiency does not prevent growth decline of Pinus canariensis in a semi-arid treeline ecotone in Tenerife, Canary Islands (Spain). Ann For Sci 73:741–749. doi: 10.1007/s13595-016-0562-5 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen X, Li BL, Li Q, Li JL, Abdulla S (2012) Spatio-temporal pattern and changes of evapotranspiration in arid Central Asia and Xinjiang of China. J Arid Land 4:105–112. doi: 10.3724/sp.j.1227.2012.00105 CrossRefGoogle Scholar
  7. Dorigo WA, Zurita-Milla R, de Wit AJW, Brazile J, Singh R, Schaepman ME (2007) A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int J Appl Earth Obs Geoinform 9:165–193. doi: 10.1016/j.jag.2006.05.003 CrossRefGoogle Scholar
  8. Eichelmann E, Wagner-Riddle C, Warland J, Deen B, Voroney P (2016) Evapotranspiration, water use efficiency, and energy partitioning of a mature switchgrass stand. Agric Forest Meteorol 217:108–119. doi: 10.1016/j.agrformet.2015.11.008 CrossRefGoogle Scholar
  9. Eldridge DJ, Poore AGB, Ruiz-Colmenero M, Letnic M, Soliveres S (2016) Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol Appl 26:1273–1283. doi: 10.1890/15-1234 CrossRefPubMedGoogle Scholar
  10. Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149:78–90. doi: 10.1007/bf00386231 CrossRefPubMedGoogle Scholar
  11. Glenn EP, Jarchow CJ, Waugh WJ (2016) Evapotranspiration dynamics and effects on groundwater recharge and discharge at an arid waste disposal site. J Arid Environ 133:1–9. doi: 10.1016/j.jaridenv.2016.05.003 CrossRefGoogle Scholar
  12. Guo S, Yang G, Li Q, Zhao C (2015) Observation and estimation of the evapotranspiration of alpine meadow in the upper reaches of the Aksu River, Xinjiang. J Glaciol Geocryol 37:241–248Google Scholar
  13. Hamerlynck EP, Scott RL, Cavanaugh ML, Barron-Gafford G (2014) Water use efficiency of annual-dominated and bunchgrass-dominated savanna intercanopy space. Ecohydrology 7:1208–1215. doi: 10.1002/eco.1452 Google Scholar
  14. Han QF, Luo GP, Li CF, Ye H, Chen YL (2013) Modeling grassland net primary productivity and water-use efficiency along an elevational gradient of the Northern Tianshan Mountains. J Arid Land 5:354–365. doi: 10.1007/s40333-013-0182-y CrossRefGoogle Scholar
  15. Han QF, Luo GP, Li CF, Xu WQ (2014) Modeling the grazing effect on dry grassland carbon cycling with Biome-BGC model. Ecol Complex 17:149–157. doi: 10.1016/j.ecocom.2013.12.002 CrossRefGoogle Scholar
  16. Herzog KM, Thum R, Kronfuss G, Heldstab HJ, Hasler R (1998) Patterns and mechanisms of transpiration in a large subalpine Norway spruce (Picea abies (L.) Karst.). Ecol Res 13:105–116. doi: 10.1046/j.1440-1703.1998.00250.x CrossRefGoogle Scholar
  17. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  18. Hu R, Jiang F, Wang Y, Fang Z (2002) A study on signals and effects of climatic pattern change from warm-dry to warm-wet in Xinjiang. Arid Land Geogr 25:194–200Google Scholar
  19. Irisarri JGN, Oesterheld M, Paruelo JM, Texeira MA (2012) Patterns and controls of above-ground net primary production in meadows of Patagonia. A remote sensing approach. J Veg Sci 23:803. doi: 10.1111/j.1654-1103.2012.01404.x CrossRefGoogle Scholar
  20. Ito A, Inatomi M (2012) Water-use efficiency of the terrestrial biosphere: a model analysis focusing on interactions between the global carbon and water cycles. J Hydrometeorol 13:681–694. doi: 10.1175/jhm-d-10-05034.1 CrossRefGoogle Scholar
  21. Jung M, Vetter M, Herold M, Churkina G, Reichstein M, Zaehle S, Ciais P, Viovy N, Bondeau A, Chen Y, Trusilova K, Feser F, Heimann M (2007) Uncertainties of modeling gross primary productivity over Europe: a systematic study on the effects of using different drivers and terrestrial biosphere models. Glob Biogeochem Cycles. doi: 10.1029/2006gb002915 Google Scholar
  22. Laniak GF, Olchin G, Goodall J, Voinov A, Hill M, Glynn P, Whelan G, Geller G, Quinn N, Blind M, Peckham S, Reaney S, Gaber N, Kennedy R, Hughes A (2013) Integrated environmental modeling: a vision and roadmap for the future. Environ Model Softw 39:3–23. doi: 10.1016/j.envsoft.2012.09.006 CrossRefGoogle Scholar
  23. Li S-G, Asanuma J, Kotani A, Davaa G, Oyunbaatar D (2007) Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints. J Hydrol 333:133–143. doi: 10.1016/j.jhydrol.2006.07.021 CrossRefGoogle Scholar
  24. Li Z, Yang DW, Hong Y (2013) Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J Hydrol 500:157–169. doi: 10.1016/j.jhydrol.2013.07.023 CrossRefGoogle Scholar
  25. Li J, Zhang FW, Lin L, Li HQ, Du YG, Li YK, Cao GM (2015a) Response of the plant community and soil water status to alpine Kobresia meadow degradation gradients on the Qinghai-Tibetan Plateau, China. Ecol Res 30:589–596. doi: 10.1007/s11284-015-1258-2 CrossRefGoogle Scholar
  26. Li Y, Fan J, Hu Z, Shao Q, Zhang L, Yu H (2015b) Influence of land use patterns on evapotranspiration and its components in a temperate grassland ecosystem. Adv Meteorol. doi: 10.1155/2015/452603 Google Scholar
  27. Liu WB, Wang L, Zhou J, Li YZ, Sun FB, Fu GB, Li XP, Sang YF (2016) A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. J Hydrol 538:82–95. doi: 10.1016/j.jhydrol.2016.04.006 CrossRefGoogle Scholar
  28. Monteith JL (1986) How do crops manipulate water-supply and demand. Philos Trans Royal Soc A 316:245–259. doi: 10.1098/rsta.1986.0007 CrossRefGoogle Scholar
  29. Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800. doi: 10.1016/j.rse.2011.02.019 CrossRefGoogle Scholar
  30. Nagler PL, Doody TM, Glenn EP, Jarchow CJ, Barreto-Munoz A, Didan K (2016) Wide-area estimates of evapotranspiration by red gum (Eucalyptus camaldulensis) and associated vegetation in the Murray-Darling River Basin, Australia. Hydrol Process 30:1376–1387. doi: 10.1002/hyp.10734 CrossRefGoogle Scholar
  31. Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011) Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Glob Change Biol 17:1073–1082. doi: 10.1111/j.1365-2486.2010.02280.x CrossRefGoogle Scholar
  32. Nouri H, Glenn EP, Beecham S, Boroujeni SC, Sutton P, Alaghmand S, Noori B, Nagler P (2016) Comparing three approaches of evapotranspiration estimation in mixed urban vegetation: field-based, remote sensing-based and observational-based methods. Remote Sens 8:492. doi: 10.3390/rs8060492 CrossRefGoogle Scholar
  33. Petritsch R, Hasenauer H, Pietsch SA (2007) Incorporating forest growth response to thinning within biome-BGC. For Ecol Manag 242:324–336. doi: 10.1016/j.foreco.2007.01.050 CrossRefGoogle Scholar
  34. Running SW, Coughlan JC (1988) A general-model of forest ecosystem processes for regional applications.1. Hydrologic balance, canopy gas-exchange and primary production processes. Ecol Model 42:125–154. doi: 10.1016/0304-3800(88)90112-3 CrossRefGoogle Scholar
  35. Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1:157–167. doi: 10.2307/1941808 CrossRefPubMedGoogle Scholar
  36. Toda M, Takata K, Nishimura N, Yamada M, Miki N, Nakai T, Kodama Y, Uemura S, Watanabe T, Sumida A, Hara T (2011) Simulating seasonal and inter-annual variations in energy and carbon exchanges and forest dynamics using a process-based atmosphere-vegetation dynamics model. Ecol Res 26:105–121. doi: 10.1007/s11284-010-0763-6 CrossRefGoogle Scholar
  37. Trepekli A, Loupa G, Rapsomanikis S (2016) Seasonal evapotranspiration, energy fluxes and turbulence variance characteristics of a Mediterranean coastal grassland. Agric Forest Meteorol 226:13–27. doi: 10.1016/j.agrformet.2016.05.006 CrossRefGoogle Scholar
  38. Vicente-Serrano SM, Camarero JJ, Zabalza J, Sanguesa-Barreda G, Lopez-Moreno JI, Tague CL (2015) Evapotranspiration deficit controls net primary production and growth of silver fir: implications for Circum-Mediterranean forests under forecasted warmer and drier conditions. Agric Forest Meteorol 206:45–54. doi: 10.1016/j.agrformet.2015.02.017 CrossRefGoogle Scholar
  39. Wang KC, Dickinson RE (2012) A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys. doi: 10.1029/2011rg000373 Google Scholar
  40. Wang QX, Masataka W, Zhu OY (2005) Simulation of water and carbon fluxes using BIOME-BGC model over crops in China. Agric Forest Meteorol 131:209–224. doi: 10.1016/j.agrformet.2005.06.002 CrossRefGoogle Scholar
  41. Wang WL, Dungan J, Hashimoto H, Michaelis AR, Milesi C, Ichii K, Nemani RR (2011) Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 1. v. Glob Change Biol 17:1350–1366. doi: 10.1111/j.1365-2486.2010.02309.x CrossRefGoogle Scholar
  42. Wang BL, Zhang MJ, Wei JL, Wang SJ, Li SS, Ma Q, Li XF, Pan SK (2013) Changes in extreme events of temperature and precipitation over Xinjiang, Northwest China, during 1960-2009. Quat Int 298:141–151. doi: 10.1016/j.quaint.2012.09.010 CrossRefGoogle Scholar
  43. Wever LA, Flanagan LB, Carlson PJ (2002) Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric Forest Meteorol 112:31–49. doi: 10.1016/s0168-1923(02)00041-2 CrossRefGoogle Scholar
  44. Wu HL (2016) Evapotranspiration estimation of Platycladus orientalis in Northern China based on various models. J For Res 27:871–878. doi: 10.1007/s11676-015-0193-y CrossRefGoogle Scholar
  45. Wu ZT, Zhang HJ, Krause CM, Cobb NS (2010) Climate change and human activities: a case study in Xinjiang, China. Clim Change 99:457–472. doi: 10.1007/s10584-009-9760-6 CrossRefGoogle Scholar
  46. Yan R, Xiong H, Zhang F (2013) The evapotranspiration and energy budget of an Achnatherum splendens grassland in the oasis-desert ecotone in Xinjiang, China, during summer and autumn. J Desert Res 33:133–140Google Scholar
  47. Yang YH, Fang JY, Fay PA, Bell JE, Ji CJ (2010) Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophys Res Lett 37:L15702. doi: 10.1029/2010gl043920 Google Scholar
  48. Zhang R, Liu P, Zhang K (2012a) Spatio-temporal characteristics of potential climate productivity of grassland and its responses to climate change in Xinjiang, China. J Desert Res 32:181–187Google Scholar
  49. Zhang Y, Wei W, Jiang F, Liu M, Wang W, Bai L, Li K (2012b) Brief communication “Assessment of change in temperature and precipitation over Xinjiang, China”. Nat Hazard Earth Syst Sci 12:1327–1331. doi: 10.5194/nhess-12-1327-2012 CrossRefGoogle Scholar
  50. Zhang S, Shen R, Zhao H, Liu T, Shao H, Zhang Z (2015) Correlating between evapotranspiration and precipitation provides insights into Xilingol grassland eco-engineering at larger scale. Ecol Eng 84:100–103. doi: 10.1016/j.ecoleng.2015.07.015 CrossRefGoogle Scholar
  51. Zhang T, Peng J, Liang W, Yang YT, Liu YX (2016a) Spatial-temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000-2010. Sci Total Environ 565:105–122. doi: 10.1016/j.scitotenv.2016.04.126 CrossRefPubMedGoogle Scholar
  52. Zhang YL, Song CH, Sun G, Band LE, McNulty S, Noormets A, Zhang QF, Zhang ZQ (2016b) Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agric Forest Meteorol 223:116–131. doi: 10.1016/j.agrformet.2016.04.003 CrossRefGoogle Scholar
  53. Zhao LW, Zhao WZ (2014) Evapotranspiration of an oasis-desert transition zone in the middle stream of Heihe River, Northwest China. J Arid Land 6:529–539. doi: 10.1007/s40333-014-0061-1 CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
  2. 2.School of Resources & Environmental Science Xinjiang UniversityUrumqiChina

Personalised recommendations