Ecological Research

, Volume 32, Issue 1, pp 37–49

Local lithological drivers of post-fire vegetation recovery and implications for fire-prone regions

  • João Torres
  • Joana Marques
  • Paulo Alves
  • Hermenegildo Costa
  • João Honrado
Original Article

Abstract

Local ecosystem resilience to fire disturbance can be influenced by multiple factors, from topography and climate, to fire history and pre-fire structure of biotic communities. Here we investigated the factors affecting post-fire recovery of scrub vegetation in areas under Mediterranean climate affected by frequent fires. We hypothesized that, under comparable climatic and topographic conditions, geological factors (with bedrock type as a proxy) would be at least as important as fire history in explaining patterns of post-fire recovery. We surveyed scrub vegetation in a mountain study area in Portugal, using a stratified random sampling scheme, with fire frequency, time since last fire, and bedrock type (granite vs. schist) as stratifying layers. Based on vegetation and plant community data from 40 plots, we analyzed total species richness and composition, and the relative abundance of functional groups defined on the basis of general (non fire-specific) life-history traits. We found that, at a local scale, lithology can override fire history in determining post-fire recovery. Vegetation plots on granite exhibited a considerable development of tall scrubs and higher values of total species richness. They also hosted higher numbers of animal-dispersed woody species, of trees and tall scrubs, of woody deciduous species, and of forest, edge and tall scrub species. Differences in the post-fire development of scrub vegetation and in the functional profile of plant communities highlight the need to consider local geological diversity when establishing priorities for post-fire active restoration under scenarios of limited resources.

Keywords

Bedrock type Fire history Local resilience Plant traits Wildfires 

References

  1. Acácio V, Holmgren M, Rego F, Moreira F, Mohren GM (2009) Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agrofor Syst 76:389–400. doi:10.1007/s10457-008-9165-y CrossRefGoogle Scholar
  2. Aguiar C (2001) Flora e vegetação da Serra de Nogueira e do Parque Natural de Montesinho. Unpublished PhD Thesis, Universidade Técnica de Lisboa. Universidade Técnica de LisboaGoogle Scholar
  3. Aguiar C, Rodrigues O, Azevedo J, Domingos T (2009) Montanha. Ecossistemas e Bem-Estar Humano: Avaliação para Portugal do Millennium Ecosystem Assessment. Escolar Editora, Lisboa, pp 295–339Google Scholar
  4. Alencar AA, Brando PM, Asner GP, Putz FE (2015) Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol Appl 25:1493–1505. doi:10.1890/14-1528.1 CrossRefPubMedGoogle Scholar
  5. Baeza MJ, Roy J (2008) Germination of an obligate seeder (Ulex parviflorus) and consequences for wildfire management. For Ecol Manage 256:685–693. doi:10.1016/j.foreco.2008.05.014 CrossRefGoogle Scholar
  6. Baeza MJJ, Valdecantos A, Alloza JA, Vallejo VRR (2007) Human disturbance and environmental factors as drivers of long-term post-fire regeneration patterns in Mediterranean forests. J Veg Sci 18:243. doi:10.1658/1100-9233(2007)18[243:HDAEFA]2.0.CO;2CrossRefGoogle Scholar
  7. Bajocco S, Ricotta C (2008) Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer? Landsc Ecol 23:241–248. doi:10.1007/s10980-007-9176-5 CrossRefGoogle Scholar
  8. Bray JR, Curtis JT (1957) An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol Monogr 27:325–349. doi:10.2307/1942268 CrossRefGoogle Scholar
  9. Bunce RGH, Metzger MJ, Jongman RHG, Brandt J, De Blust G, Elena-Rossello R, Groom GB, Halada L, Hofer G, Howard DC, Kovář P, Mücher CA, Padoa-Schioppa E, Paelinx D, Palo A, Perez-Soba M, Ramos IL, Roche P, Skånes H, Wrbka T (2008) A standardized procedure for surveillance and monitoring Euro- pean habitats and provision of spatial data. Landsc Ecol 23:11–25. doi:10.1007/s10980-007-9173-8 CrossRefGoogle Scholar
  10. Camac JS, Williams RJ, Wahren CH, Morris WK, Morgan JW (2013) Post-fire regeneration in alpine heathland: does fire severity matter? Austral Ecol 38:199–207. doi:10.1111/j.1442-9993.2012.02392.x CrossRefGoogle Scholar
  11. Castell C, Terradas J, Tenhunen JD (1994) Water relations, gas exchange, and growth of resprouts and mature plant shoots of Arbutus unedo L. and Quercus ilex L. Oecologia 98:201–211. doi:10.1007/BF00341473 CrossRefGoogle Scholar
  12. Catry FX, Rego FC, Bação FL, Moreira F (2009) Modeling and mapping wildfire ignition risk in Portugal. Int J Wildl Fire 18:921. doi:10.1071/WF07123 CrossRefGoogle Scholar
  13. Clarke KR, Warwick RM (2001) PRIMER v5: user manual/tutorial. PRIMER-E LimitedGoogle Scholar
  14. Clarke PJ, Lawes MJ, Midgley JJ (2010) Resprouting as a key functional trait in woody plants–challenges to developing new organizing principles. Sprouting behaviour workshops, Working Group 67, ARC-NZ Research Network for Vegetation Function, Armidale, Australia, 2009-2010. New Phytol 188:651–654. doi:10.1111/j.1469-8137.2010.03508.x CrossRefPubMedGoogle Scholar
  15. Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJE (2013) Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol 197:19–35CrossRefPubMedGoogle Scholar
  16. Clemente AS, Rego FC, Correia OA (2005) Growth, water relations and photosynthesis of seedlings and resprouts after fire. Acta Oecol 27:233–243. doi:10.1016/j.actao.2005.01.005 CrossRefGoogle Scholar
  17. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MG, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi:10.1071/BT02124 CrossRefGoogle Scholar
  18. Davis SD (1989) Patterns in mixed chaparral stands: differential water status and seedling survival during summer drought. Calif chaparral Paradig reexamined Science Se 97–105Google Scholar
  19. DGTerritório (1990) Carta de Uso e Ocupação do Solo de Portugal Continental para 1990 - COS1990. http://www.dgterritorio.pt/cartografia_e_geodesia/cartografia/cartografia_tematica/carta_de_ocupacao_do_solo__cos_/cos__90/. Accessed 29 Apr 2016
  20. Di Mauro B, Fava F, Busetto L, Crosta GF, Colombo R (2014) Post-fire resilience in the Alpine region estimated from MODIS satellite multispectral data. Int J Appl Earth Obs Geoinf 32:163–172. doi:10.1016/j.jag.2014.04.010 CrossRefGoogle Scholar
  21. Díaz-Delgado R, Lloret F, Pons X, Terradas J (2002) Satellite evidence of decreasing resilience in mediterranean plant communities after recurrent wildfires. Ecology 83:2293–2303. doi:10.1890/0012-9658(2002)083[2293:SEODRI]2.0.CO;2CrossRefGoogle Scholar
  22. Duguy B, Vallejo VR (2008) Land-use and fire history effects on post-fire vegetation dynamics in eastern Spain. J Veg Sci 19:97–108. doi:10.3170/2007-8-18336 CrossRefGoogle Scholar
  23. Duguy B, Paula S, Pausas JG, Alloza JA, Gimeno T, Vallejo RV (2013) Effects of climate and extreme events on wild fire regime and their ecological impacts. In: Navarra A, Tubiana L (eds) Regional assessment of climate change in the Mediterranean, Forests and Ecosystem Services and People, vol 2., AgricultureSpringer, Dordrecht, pp 101–134CrossRefGoogle Scholar
  24. Fleck I, Diaz C, Pascual M, Iñiguez J (1995) Ecophysiological differences between first-year resprouts after wildfire and unburned vegetation of Arbutus unedo and Coriaria myrtifolia. Acta Oecol 16:55–69Google Scholar
  25. Frazer JM, Davis SD (1988) Differential survival of chaparral seedlings during the 1st summer drought after wild fire.Oecologia 76:215-221F784. Oecologia 76Google Scholar
  26. Gill AM (1981) Adaptive responses of Australian vascular plant species to fires. In: Fire and the Australian biota (Gill AM, Groves RH and Noble IR, eds.), p.582. Australian Academy of Science, CanberraGoogle Scholar
  27. Gunderson LH (2000) Ecological resilience—in theory and application. Annu Rev Ecol Syst 31:425–439. doi:10.1146/annurev.ecolsys.31.1.425 CrossRefGoogle Scholar
  28. Hastings SJ, Oechel WC, Sionit N (1989) Water relations and photosynthesis of chaparral resprouts and seedlings following fire and hand clearing. Calif chaparral Paradig reexamined Science Se:107–113Google Scholar
  29. He HS, Mladenoff DJ (1999) Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology 80:81–99. doi:10.1890/0012-9658(1999)080[0081:SEASSO]2.0.CO;2CrossRefGoogle Scholar
  30. Honrado J (2003) Flora e Vegetação do Parque Nacional da Peneda-Gerês. Universidade do PortoGoogle Scholar
  31. Honrado J (2005) Carici piluliferae-Genistetum triacanthi, a new heath association from Northwestern Portugal. Silva Lusit 13:127–131Google Scholar
  32. Honrado JP, Alonso J, Aguiar C (2009) O Património Natural como factor de desenvolvimento e competetividade territoriais no Baixo TâmegaGoogle Scholar
  33. Huffman DW, Crouse JE, Walker Chancellor W, Fulé PZ (2012) Influence of time since fire on pinyon-juniper woodland structure. For Ecol Manage 274:29–37. doi:10.1016/j.foreco.2012.02.014 CrossRefGoogle Scholar
  34. Kazanis D, Arianoutsou M (2004) Long-term post-fire vegetation dynamics in Pinus halepensis forests of Central Greece: a functional group approach. Plant Ecol 171:101–121CrossRefGoogle Scholar
  35. Keeley JE (1986) Resilience of mediterranean shrub communities to fire. Resilience in mediterranean-type ecosystems. Springer, Netherlands, pp 95–112CrossRefGoogle Scholar
  36. Keeley JE (2002) Native American impacts on fire regimes of the California coastal ranges. J Biogeogr 29:303–320. doi:10.1046/j.1365-2699.2002.00676.x CrossRefGoogle Scholar
  37. Keeley JE, Bond WJ, Bradstock RA, Pausas J, Rundel PW (2011a) Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press, p 515Google Scholar
  38. Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock R (2011b) Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406–411CrossRefPubMedGoogle Scholar
  39. Krivtsov V, Vigy O, Legg C, Curt T, Rigolot E, Lecomte I, Jappiot M, Lampin-Maillet C, Fernandes P, Pezzatti GB (2009) Fuel modelling in terrestrial ecosystems: an overview in the context of the development of an object-orientated database for wild fire analysis. Ecol Modell 220:2915–2926. doi:10.1016/j.ecolmodel.2009.08.019 CrossRefGoogle Scholar
  40. Langston N (1995) Forest dreams, forest nightmares: the paradox of old growth in the Inland West. University of Washington Press, SeattleGoogle Scholar
  41. Lee S-WW, Lee M-BB, Lee Y-GG, Won M-SS, Kim J-JJ, Hong S-k K (2009) Relationship between landscape structure and burn severity at the landscape and class levels in Samchuck, South Korea. For Ecol Manage 258:1594–1604. doi:10.1016/j.foreco.2009.07.017 CrossRefGoogle Scholar
  42. Lloret F, Vilá M (2003) Diversity patterns of plant functional types in relation to fire regime and previous land use in Mediterranean woodlands. J Veg Sci 14:387–398. doi:10.1111/j.1654-1103.2003.tb02164.x CrossRefGoogle Scholar
  43. Lloret F, Calvo E, Pons X, Díaz-Delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landsc Ecol 17:745–759. doi:10.1023/A:1022966930861 CrossRefGoogle Scholar
  44. Lloret F, Estevan H, Vayreda J, Terradas J (2005) Fire regenerative syndromes of forest woody species across fire and climatic gradients. Oecologia 146:461–468. doi:10.1007/s00442-005-0206-1 CrossRefPubMedGoogle Scholar
  45. MacGillivray CW, Grime JP, Team TISP (Isp) (1995) Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Funct Ecol 9:640–649CrossRefGoogle Scholar
  46. Maguire AJ, Menges ES (2011) Post-fire growth strategies of resprouting Florida scrub vegetation. Fire Ecol 7:12–25. doi:10.4996/fireecology.0703012 CrossRefGoogle Scholar
  47. Marques S, Borges JG, Garcia-Gonzalo J, Moreira F, Carreiras JMB, Oliveira MM, Cantarinha A, Botequim B, Pereira JMC (2011) Characterization of wildfires in Portugal. Eur J For Res 130:775–784. doi:10.1007/s10342-010-0470-4 CrossRefGoogle Scholar
  48. Marzano R, Lingua E, Garbarino M (2012) Post-fire effects and short-term regeneration dynamics following highseverity crown fires in a Mediterranean forest. IForest 5:93–100. doi:10.3832/ifor0612-005 CrossRefGoogle Scholar
  49. Mateus P, Fernandes PM (2014) Forest context and policies in Portugal. Springer International Publishing, ChamGoogle Scholar
  50. McKenzie D, Miller C, Donald AF (2011) The landscape ecology of fire. SpringerGoogle Scholar
  51. McPherson GR, DeStefano S (2003) Applied ecology and natural resource management. Cambridge University PressGoogle Scholar
  52. Menges EES, Kohfeldt N (1995) Life history strategies of florida scrub plants in relation to fire. Bull Torrey Bot Club 122:282–297CrossRefGoogle Scholar
  53. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape—wildfire interactions in southern Europe: implications for landscape management. J Environ Manage 92:2389–2402. doi:10.1016/j.jenvman.2011.06.028 CrossRefPubMedGoogle Scholar
  54. Moreno JM, Oechel WC (1992) Factors controlling seedling establishment in southern California chaparral. Oecologia 908047:50–60CrossRefGoogle Scholar
  55. Moretti M, Legg C (2009) Combining plant and animal traits to assess community functional responses to disturbance. Ecography (Cop) 32:299–309. doi:10.1111/j.1600-0587.2008.05524.x CrossRefGoogle Scholar
  56. Nano CEM, Clarke PJ (2011) How do drought and fire influence the patterns of resprouting in Australian deserts? Plant Ecol 212:2095–2110. doi:10.1007/s11258-011-9988-x CrossRefGoogle Scholar
  57. Ne’eman G, Ne’eman R, Keith DA, Whelan RJ (2009) Does post-fire plant regeneration mode affect the germination response to fire-related cues? Oecologia 159:483–492. doi: 10.1007/s00442-008-1237-1
  58. Parks SA, Holsinger LM, Miller C, Nelson CR (2015) Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression. Ecol Appl 25:1478–1492. doi:10.1890/14-1430.1 CrossRefPubMedGoogle Scholar
  59. Pausas JG, Lloret F (2007) Spatial and temporal patterns of plant functional types under simulated fire regimes. Int J Wildl Fire 16:484–492. doi:10.1071/WF06109 CrossRefGoogle Scholar
  60. Pausas JG, Paula S (2012) Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Glob Ecol Biogeogr 21:1074–1082. doi:10.1111/j.1466-8238.2012.00769.x CrossRefGoogle Scholar
  61. Pausas J, Schwilk D (2012) Fire and plant evolution. New Phytol 301–303Google Scholar
  62. Pausas JG, Bradstock RA, Keith DA, Keeley JE, Hoffman W, Kenny B, Lloret F, Trabaud L (2004a) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100. doi:10.1890/02-4094 CrossRefGoogle Scholar
  63. Pausas JG, Ribeiro E, Vallejo R (2004b) Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. For Ecol Manage 203:251–259. doi:10.1016/j.foreco.2004.07.061 CrossRefGoogle Scholar
  64. Pausas JG, Keeley JE, Verdú M (2006) Inferring differential evolutionary processes of plant persistence traits in Northern Hemisphere Mediterranean fire-prone ecosystems. J Ecol 94:31–39. doi:10.1111/j.1365-2745.2005.01092.x CrossRefGoogle Scholar
  65. Pausas JG, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildl Fire 17:713–723. doi:10.1071/WF07151 CrossRefGoogle Scholar
  66. Pereira JMC, Santos M (2003) Cartografia das Áreas Queimadas e do Risco de Incêndio em Portugal Continental (1990-1999). LisboaGoogle Scholar
  67. Porto M, Correia O, Beja P (2011) Long-term consequences of mechanical fuel management for the conservation of Mediterranean forest herb communities. Biodivers Conserv 20:2669–2691. doi:10.1007/s10531-011-0098-9 CrossRefGoogle Scholar
  68. Proença V, Pereira HM, Vicente L (2010) Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation. Acta Oecol 36:626–633. doi:10.1016/j.actao.2010.09.008 CrossRefGoogle Scholar
  69. Santana J, Porto M, Reino L, Beja P (2011) Long-term understory recovery after mechanical fuel reduction in Mediterranean cork oak forests. For Ecol Manage 261:447–459. doi:10.1016/j.foreco.2010.10.030 CrossRefGoogle Scholar
  70. Santana J, Porto M, Gordinho L, Reino L, Beja P (2012) Long-term responses of Mediterranean birds to forest fuel management. J Appl Ecol 49:632–643. doi:10.1111/j.1365-2664.2012.02141.x Google Scholar
  71. Saura-Mas S, Lloret F (2007) Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Ann Bot 99:545–554. doi:10.1093/aob/mcl284 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Seligman NG, Henkin Z (2000) Regeneration of a dominant Mediterranean dwarf-shrub after fire. J Veg Sci 11:893–902. doi:10.2307/3236559 CrossRefGoogle Scholar
  73. Silva AMS (1982) Portugal: Atlas do Ambiente: Carta litológica: 1: 1.000. 000: notícia explicativaGoogle Scholar
  74. Silva JS, Vaz P, Moreira F, Catry F, Rego FC (2011) Wildfires as a major driver of landscape dynamics in three fire-prone areas of Portugal. Landsc Urban Plan 101:349–358. doi:10.1016/j.landurbplan.2011.03.001 CrossRefGoogle Scholar
  75. Silvertown J, Baskin CC, Baskin JM (1999) Seeds: ecology, biogeography, and evolution of dormancy and germination. Am J Bot 86:903. doi:10.2307/2656711 CrossRefGoogle Scholar
  76. Smith HG, Sheridan GJ, Lane PNJ, Nyman P, Haydon S (2011) Wildfire effects on water quality in forest catchments: a review with implications for water supply. J Hydrol 396:170–192. doi:10.1016/j.jhydrol.2010.10.043 CrossRefGoogle Scholar
  77. Syphard AD, Franklin J (2010) Species traits affect the performance of species distribution models for plants in southern California. J Veg Sci 21:177–189. doi:10.1111/j.1654-1103.2009.01133.x CrossRefGoogle Scholar
  78. Ter Braak CJF, Šmilauer P (2002) CANOCO version 4.5Google Scholar
  79. Tyler CM (1996) relative importance of factors contributing to postfire seedling establishment in maritime chaparral. Ecology 77:2182–2195. doi:10.2307/2265711 CrossRefGoogle Scholar
  80. Vallejo VR, Alloza JA (1998) The restoration of burned lands: the case of eastern Spain. Large For fires 91–108Google Scholar
  81. Vallejo VR, Arianoutsou M, Moreira F (2012) Post-Fire Management and Restoration of Southern European Forests. Post-fire For Manag South Eur a COST action Gather disseminating Sci Knowl 24:93–119. doi: 10.1007/978-94-007-2208-8
  82. Van Der Pijl L (1972) Principles of dispersal in higher plants, 2nd edn. Springer-Verlag, BerlimCrossRefGoogle Scholar
  83. Verdú M (2000) Ecological and evolutionary differences between Mediterranean seeders and resprouters. J Veg Sci 11:265–268. doi:10.2307/3236806 CrossRefGoogle Scholar
  84. Verdú M, Pausas JG, Segarra-Moragues JG, Ojeda F (2007) Burning phylogenies: fire, molecular evolutionary rates, and diversification. Evolution (N Y) 61:2195–2204. doi:10.1111/j.1558-5646.2007.00187.x Google Scholar

Copyright information

© The Ecological Society of Japan 2016

Authors and Affiliations

  1. 1.InBIO-Rede de Investigação em Biodiversidade e Biologia Evolutiva, Laboratório AssociadoCIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de VairãoVairãoPortugal
  2. 2.Universidade Nacional Timor Lorosa’eDiliTimor-Leste
  3. 3.Faculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations