Ecological Research

, Volume 31, Issue 5, pp 749–755 | Cite as

Colony-dependent sex differences in protozoan communities of the lower termite Reticulitermes speratus (Isoptera: Rhinotermitidae)

  • Tatsuya Inagaki
  • Kenji Matsuura
Original Article


In many animals, sex differences in hormones, behavior, and immunity lead to differences in their gut microbial communities. One of the best-known examples of mutualistic symbiosis is that between lower termites and their intestinal protozoa. Although differences in the protozoan communities of different castes have been studied in lower termites, nothing is known about the sex differences in protozoan communities in neuter castes. Here, we show that termite workers have different protozoan communities according to sex depending on the colony. We investigated the communities of symbiotic protozoa living in lower termites, Reticulitermes speratus, and how they are affected by sex and caste. Workers had the largest numbers of protozoa, followed by soldiers, whereas reproductives (primary kings and secondary queens) had no protozoa. Workers showed colony-dependent sex differences in the total abundance of protozoa, whereas soldiers showed no such sex differences. There were significant sex effect and/or interaction effect between colony and sex in abundances of five species of protozoa in workers. Workers also showed significant sex differences and/or colony-dependent sex differences in proportion of six species of protozoa. These may result in sex differences in the host–symbiont interaction due to physiological or behavioral sex differences in workers that have not been recognized previously. This study has an important implication: although workers are not engaged in reproduction, their potential sex difference may affect various aspects of social interactions.


Mutualistic symbiosis Sex differences Social insects Protozoa Isoptera 



We thank S. Dobata and K. Kobayashi for helpful comments and T. Yashiro for termite photographs. This work was supported by Japan Society for the Promotion of Science (, No. 25221206 to KM).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11284_2016_1387_MOESM1_ESM.docx (86 kb)
Supplementary material 1 (DOCX 85 kb)


  1. Andrew BJ (1930) Method and rate of protozoan refaunation in the termite Termopsis angusticollus Hagen. Calif Univ Publ Zool 33:449–470Google Scholar
  2. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, Lusis AJ, Knight R, Caporaso JG, Svanbäck R (2014) Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. doi: 10.1038/ncomms5500 PubMedPubMedCentralGoogle Scholar
  3. Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci 9:424–428. doi: 10.1073/pnas.9.12.424 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cleveland LR (1925) The feeding habit of termite castes and its relation to their intestinal flagellates. Biol Bull 48:295–308. doi: 10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  5. Cleveland LR (1949) Hormone-induced sexual cycles of flagellates. J Morphol 85:197–295CrossRefPubMedGoogle Scholar
  6. Cook TJ, Gold RE (1998) Organization of the symbiotic flagellate community in three castes of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 31:25–39Google Scholar
  7. Cook TJ, Gold RE (1999) Symbiotic hindgut flagellate communities of the subterranean termites Reticulitermes virginicus and Reticulitermes flavipes in Texas (Isoptera: Rhinotermitidae). Sociobiology 34:533–544Google Scholar
  8. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. doi: 10.1038/nrn3346 CrossRefPubMedGoogle Scholar
  9. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 107:14691–14696. doi: 10.1073/pnas.1005963107 CrossRefPubMedPubMedCentralGoogle Scholar
  10. De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, Denou E, Silva MA, Santacruz A, Sanz Y, Surette MG, Verdu EF, Collins SM, Bercik P (2015) Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 6:7735. doi: 10.1038/ncomms8735 CrossRefPubMedGoogle Scholar
  11. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735. doi: 10.1111/1574-6976.12025 CrossRefPubMedGoogle Scholar
  12. Feldman M, Barnett C (1991) Fasting gastric pH and its relationship to true hypochlorhydria in humans. Dig Dis Sci 36:866–869. doi: 10.1007/BF01297133 CrossRefPubMedGoogle Scholar
  13. Freire AC, Basit AW, Choudhary R, Piong CW, Merchant HA (2011) Does sex matter? The influence of gender on gastrointestinal physiology and drug delivery. Int J Pharm 415:15–28. doi: 10.1016/j.ijpharm.2011.04.069 CrossRefPubMedGoogle Scholar
  14. Gomez A, Luckey D, Taneja V (2015) The gut microbiome in autoimmunity: sex matters. Clin Immunol 159:154–162. doi: 10.1016/j.clim.2015.04.016 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052. doi: 10.1073/pnas.1010529108 CrossRefPubMedCentralGoogle Scholar
  16. Honigberg BM (1970) Protozoa associated with termites and their role in digestion. In: Krishna K, Weesner FM (eds) Biology of termites, vol II., Academic PressNew York, London, pp 1–36Google Scholar
  17. Hu XP, Song D, Gao X (2011) Biological changes in the Eastern subterranean termite, Reticulitermes flavipes (Isoptera, Rhinotermitidae) and its protozoa profile following starvation. Insectes Soc 58:39–45. doi: 10.1007/s00040-010-0114-1 CrossRefGoogle Scholar
  18. Kirby H (1937) Host-parasite relations in the distribution of protozoa in termites. Univ Calif Publ Zool 41:189–211Google Scholar
  19. Kirchner WH, Minkley N (2003) Nestmate discrimination in the harvester termite Hodotermes mossambicus. Insectes Soc 50:222–225. doi: 10.1007/s00040-003-0667-3 CrossRefGoogle Scholar
  20. Kitade O (2007) Characteristics and host-symbiont relationships of termite gut flagellates. Jpn J Protozool 40:101–112Google Scholar
  21. Lewis JL, Forschler BT (2004) Protist communities from four castes and three species of Reticulitermes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 97:1242–1251. doi:10.1603/0013-8746(2004)097[1242:pcffca];2Google Scholar
  22. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788. doi: 10.1038/nrmicro1978 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lo Pinto M, Varrica G, Agrò A (2016) Temporal variations in symbiotic hindgut protist community of the subterranean termite Reticulitermes lucifugus Rossi in Sicily. Insectes Soc 63:1–12. doi: 10.1007/s00040-015-0449-8 CrossRefGoogle Scholar
  24. Markle JGM, Frank DN, Mortin-toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–1088. doi: 10.1126/science.1233521 CrossRefPubMedGoogle Scholar
  25. Matsuura K (2001) Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92:20–26CrossRefGoogle Scholar
  26. Matsuura K (2006) A novel hypothesis for the origin of the sexual division of labor in termites: which sex should be soldiers? Evol Ecol 20:565–574. doi: 10.1007/s10682-006-9117-9 CrossRefGoogle Scholar
  27. Menasria T, Moussa F, El-Hamza S, Tine S, Megri R, Chenchouni H (2014) Bacterial load of German cockroach (Blattella germanica) found in hospital environment. Pathog Glob Health 108:141–147. doi: 10.1179/2047773214Y.0000000136 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Minkley N, Fujita A, Brune A, Kirchner WH (2006) Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insectes Soc 53:339–344. doi: 10.1007/s00040-006-0878-5 CrossRefGoogle Scholar
  29. Mitaka Y, Kobayashi K, Mikheyev A, Tin MMY, Watanabe Y, Matsuura K (2016) Caste-specific and sex-specific expression of chemoreceptor genes in a termite. PLoS One 11:e0146125. doi: 10.1371/journal.pone.0146125 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Luigi F, Henrissat B, Knight R, Gordon JI (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:970–974. doi: 10.1126/science.1198719 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nutting WL (1956) Reciprocal protozoan transfaunations between the roach, Cryptocercus, and the termite, Zootermopsis. Biol Bull 110:83–90CrossRefGoogle Scholar
  32. Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignel DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438Google Scholar
  33. Prewett EJ, Smith JTL, Nwokolo AM, Sawyerr AM, Pounder RE (1991) Twenty-four hour intragastric acidity and plasma gastrin concentration profiles in female and male subjects. Clin Sci 80:619–624CrossRefPubMedGoogle Scholar
  34. Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS ONE 7:1–10. doi: 10.1371/journal.pone.0030768 Google Scholar
  35. Restif O, Amos W (2010) The evolution of sex-specific immune defences. Proc R Soc Lond B 277:2247–2255. doi: 10.1098/rspb.2010.0188 CrossRefGoogle Scholar
  36. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C (2010) Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329:1353–1355. doi: 10.1126/science.1190689 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Roisin Y, Korb A (2011) Social organisation and the status of workers in termites. In: Bignel DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 133–164Google Scholar
  38. Schomburg L, Stoedter M, Renko K, Hög A, Schomburg L (2010) Selenium controls the sex-specific immune response and selenoprotein expression during the acute-phase response in mice. Biochem J 429:43–51. doi: 10.1042/BJ20091868 CrossRefPubMedGoogle Scholar
  39. Shastri P, McCarville J, Kalmokoff M, Brooks SPJ, Green-Johnson JM (2015) Sex differences in gut fermentation and immune parameters in rats fed an oligofructose-supplemented diet. Biol Sex Differ 6:13. doi: 10.1186/s13293-015-0031-0 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shimada K, Lo N, Kitade O, Wakui A, Maekawa K (2013) Cellulolytic protist numbers rise and fall dramatically in termite queens and kings during colony foundation. Eukaryot Cell 12:545–550. doi: 10.1128/EC.00286-12 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674. doi: 10.1126/science.1212782 CrossRefPubMedGoogle Scholar
  42. Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14:403–414. doi: 10.1016/j.cmet.2011.07.012 CrossRefPubMedGoogle Scholar
  43. Su NY, La Fage JP (1987) Initiation of worker-soldier trophallaxis by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Insectes Soc 34:229–235. doi: 10.1007/BF02224355 CrossRefGoogle Scholar
  44. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  45. Toga K, Hanmoto S, Suzuki R, Watanabe D, Miura T, Maekawa K (2016) Sexual difference in juvenile-hormone titer in workers leads to sex-biased soldier differentiation in termites. J Insect Physiol 87:63–70. doi: 10.1016/j.jinsphys.2016.02.005 CrossRefPubMedGoogle Scholar
  46. Yamaoka I, Sasabe K, Terada K (1986) A timely infection of intestinal protozoa in developing hindgut of the termite (Reticulitermes speratus). Zoolog Sci 3:175–180Google Scholar
  47. Zimet M, Stuart A (1982) Sexual dimorphism in the immature stages of the termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 7:1–7Google Scholar

Copyright information

© The Ecological Society of Japan 2016

Authors and Affiliations

  1. 1.Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations