Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Extreme weather events and plant–plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall

Abstract

Biotic interactions play an important role in ecosystem function and structure in the face of global climate change. We tested how plant–plant interactions, namely competition and facilitation among grassland species, respond to extreme drought and heavy rainfall events. We also examined how the functional composition (grasses, forbs, legumes) of grassland communities influenced the competition intensity for grass species when facing extreme events. We exposed experimental grassland communities of different functional compositions to either an extreme single drought event or to a prolonged heavy rainfall event. Relative neighbour effect, relative crowding and interaction strength were calculated for five widespread European grassland species to quantify competition. Single climatic extremes caused species specific shifts in plant–plant interactions from facilitation to competition or vice versa but the nature of the shifts varied depending on the community composition. Facilitation by neighbouring plants was observed for Arrhenatherum elatius when subjected to drought. Contrarily, the facilitative effect of neighbours on Lotus corniculatus was transformed into competition. Heavy rainfall increased the competitive effect of neighbours on Holcus lanatus and Lotus corniculatus in communities composed of three functional groups. Competitive pressure on Geranium pratense and Plantago lanceolata was not affected by extreme weather events. Neither heavy rainfall nor extreme drought altered the overall productivity of the grassland communities. The complementary responses in competition intensity experienced by grassland species under drought suggest biotic interactions as one stabilizing mechanism for overall community performance. Understanding competitive dynamics under fluctuating resources is important for assessing plant community shifts and degree of stability of ecosystem functions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdelhamid MT, Palta JA, Veneklaas EJ, Atkins C, Turner NC, Siddique KHM (2011) Drying the surface soil reduces the nitrogen content of faba bean (Vicia faba L.) through a reduction in nitrogen fixation. Plant Soil 339:351–362. doi:10.1007/s11104-010-0586-9

  2. Adler PB, HilleRisLambers J, Kyriakidis PC, Guan Q, Levine JM (2006) Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc Natl Acad Sci USA 103:12793–12798. doi:10.1073/pnas.0600599103

  3. Akmal M, Janssens MJ (2004) Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies. F Crop Res 88:143–155. doi:10.1016/j.fcr.2003.12.004

  4. Anten NPR, Hirose T (1999) Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow. J Ecol 87:583–597. doi:10.1046/j.1365-2745.1999.00365.x

  5. Arfin Khan MAS, Grant K, Beierkuhnlein C, Kreyling J, Jentsch A (2014) Climatic extremes lead to species-specific legume facilitation in an experimental temperate grassland. Plant Soil 379:161–175. doi:10.1007/s11104-014-2050-8

  6. Armas C, Pugnaire FI, Sala OE (2008) Patch structure dynamics and mechanisms of cyclical succession in a Patagonian steppe (Argentina). J Arid Environ 72:1552–1561. doi:10.1016/j.jaridenv.2008.03.002

  7. Bates DM, Sarkar D (2007) lme4: Linear mixed-effects models, R package version 0.9975-13, URL http://www.R-project.org

  8. Bazzaz FA, Parrish JAD (1982) Organization of grassland communities. In: Estes JR, Tyrl RJ, Brunken JN (eds) Grasses and grasslands—systematics and ecology. University of Oklahoma Press, Norman, pp 233–254

  9. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193. doi:10.1016/0169-5347(94)90088-4

  10. Bertness MD, Ewanchuk P (2002) Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia 132:392–401. doi:10.1007/s00442-002-0972-y

  11. Brooker RW (2006) Plant–plant interactions and environmental change. New Phytol 171:271–284. doi:10.1111/j.1469-8137.2006.01752.x

  12. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34. doi:10.1111/j.1365-2745.2007.01295.x

  13. Callaway RM (1997) Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112:143–149. doi:10.1007/s004420050293

  14. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965. doi:10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2

  15. Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97:1181–1191. doi:10.1111/j.1365-2745.2009.01579.x

  16. Chen S-Y, Xu J, Maestre FT, Chu C-J, Wang G, Xiao S (2009) Beyond dual-lattice models: incorporating plant strategies when modeling the interplay between facilitation and competition along environmental severity gradients. J Theor Biol 258:266–273. doi:10.1016/j.jtbi.2009.01.011

  17. Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species rangein response to global warming. Nature 391:783–786. doi:10.1038/35842

  18. Ellenberg H (1979) Indicator values of vascular plants in Central Europe. Scripta Geobotanica 9, vol 2. Verlag Erich Goltze KG, Göttingen

  19. Faraway JJ (2006) Extending the linear model with R-generalized linear, mixed effects and nonparametric regression models. Chapman & Hall/CRC, Boca Raton

  20. Freckleton RP, Watkinson AR (1997a) Measuring plant neighbour effects. Funct Ecol 11:532–534

  21. Freckleton RP, Watkinson AR (1997b) Measuring and modelling plant neighbour effects–response. Funct Ecol 11:536

  22. Freckleton RP, Watkinson AR (1999) The mis-measurement of plant competition. Funct Ecol 13:285–287. doi:10.1046/j.1365-2435.1999.013002285.x

  23. Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology—a functional approach to common British species, 2nd edn. Castlepoint Press, Colvend

  24. Gross N, Börger L, Duncan RP, Hulme PE (2013) Functional differences between alien and native species: do biotic interactions determine the functional structure of highly invaded grasslands? Funct Ecol 27:1262–1272. doi:10.1111/1365-2435.12120

  25. Gumbel EJ (1958) Statistics of extremes. Columbia Univ. Press, New York

  26. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636-638. doi:10.1126/science.1169640

  27. He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706. doi:10.1111/ele.12080

  28. Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520. doi:10.1890/07-1053.1

  29. Hillyer R, Silman MR (2010) Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change. Glob Chang Biol 16:3205–3214. doi:10.1111/j.1365-2486.2010.02268.x

  30. Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology 78:1966–1975. doi:10.1890/0012-9658(1997)078[1966:TIOFAC]2.0.CO;2

  31. Holmgren M, Gómez-Aparicio L, Quero JL, Valladares F (2012) Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities. Oecologia 169:293–305. doi:10.1007/s00442-011-2196-5

  32. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi:10.1890/04-0922

  33. Hothorn T, Bretz F, Westfall P (2007) multcomp: simultaneous inference for general linear hypotheses. R-package version 0.992-1, http://www.R-project.org

  34. Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794. doi:10.1111/j.1365-2664.2005.01082.x

  35. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptions. A special report of working group I and II of the Intergovernmental Panel of Climate Change, 582

  36. Irving LJ, Sheng YB, Woolley D, Matthew C (2007) Physiological effects of waterlogging on two lucerne varieties grown under glasshouse conditions. J Agron Crop Sci 193:345–356. doi:10.1111/j.1439-037X.2007.00277.x

  37. James EK, Crawford RMM (1998) Effect of oxygen availability on nitrogen fixation by two Lotus species under flooded conditions. J Exp Bot 49:599–609. doi:10.1093/jxb/49.320.599

  38. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374. doi:10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2

  39. Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schadler M, Schloter M, Singh BK, Stadler J, Walter J, Wellstein C, Wollecke J, Beierkuhnlein C (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702. doi:10.1111/j.1365-2745.2011.01817.x

  40. Jiang L, Kulczycki A (2004) Competition, predation and species responses to environmental change. Oikos 2:217–224. doi:10.1111/j.0030-1299.2004.13056.x

  41. Keddy PA, Shipley B (1989) Competitive hierarchies in herbaceous plant communities. Oikos 54:234–241. doi:10.2307/3565272

  42. Kikvidze Z, Khetsuriani L, Kikodze D, Callaway RM (2006) Seasonal shifts in competition and facilitation in subalpine plant communities of the central Caucasus. J Veg Sci 17:77–82. doi:10.1111/j.1654-1103.2006.tb02425.x

  43. Kreyling J, Beierkuhnlein C, Ellis L, Jentsch A (2008) Invasibility of grassland and heath communities exposed to extreme weather events - additive effects of diversity resistance and fluctuating physical environment. Oikos 117:1542–1554. doi:10.1111/j.2008.0030-1299.16653.x

  44. Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350. doi:10.1146/annurev-ecolsys-102209-144628

  45. Ledgard SF, Steele KW (1992) Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 141:137–153. doi:10.1007/BF00011314

  46. Levine JM, McEachern AK, Cowan C (2010) Do competitors modulate rare plant response to precipitation change? Ecology 91:130–140. doi:10.1890/08-2039.1

  47. Lloret F, Escudero A, Iriondo JM, Martínez-Vilalta J, Valladares F (2012) Extreme climatic events and vegetation: the role of stabilizing processes. Glob Chang Biol 18:797–805. doi:10.1111/j.1365-2486.2011.02624.x

  48. Maestre FT, Bautista S, Cortina J (2003) Positive, negative, and net effects in grass-shrub interactions in Mediterranean semiarid grasslands. Ecology 84:3186–3197. doi:10.1890/02-0635

  49. Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205. doi:10.1111/j.1365-2745.2008.01476.x

  50. Manea A, Leishman MR (2011) Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide. Oecologia 165:735–744. doi:10.1007/s00442-010-1765-3

  51. Markham JH (1997) Measuring and modelling plant neighbour effects–reply. Funct Ecol 11:534–535

  52. Markham JH, Chanway CP (1996) Measuring plant neighbour effects. Funct Ecol 10:548–549

  53. Michalet R, Brooker RW, Cavieres LA, Kikvidze Z, Lortie CJ, Pugnaire FI, Valiente-Banuet A, Callaway RM (2006) Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol Lett 9:767–773. doi:10.1111/j.1461-0248.2006.00935.x

  54. Miranda JD, Padilla FM, Pugnaire FI (2009) Response of a Mediterranean semiarid community to changing patterns of water supply. Perspect Plant Ecol Evol Syst 11:255–266. doi:10.1016/j.ppees.2009.05.001

  55. Miranda JD, Armas C, Padilla FM, Pugnaire FI (2011) Climatic change and rainfall patterns: effects on semi-arid plant communities of the Iberian Southeast. J Arid Environ 75:1302–1309. doi:10.1016/j.jaridenv.2011.04.022

  56. Mirzaei H, Kreyling J, Hussain MZ, Li YL, Tenhunen J, Beierkuhnlein C, Jentsch A (2008) A single drought event of 100-year recurrence enhances subsequent carbon uptake and changes carbon allocation in experimental grassland communities. J Plant Nutr Soil Sci 171:681–689

  57. Novoplansky A, Goldberg D (2001) Interactions between neighbour environments and drought resistance. J Arid Environ 47:11–32. doi:10.1006/jare.2000.0701

  58. Otieno D, Kreyling J, Purcell A, Herold N, Grant K, Tenhunen J, Beierkuhnlein C, Jentsch A (2012) Drought response of Arrhenatherum elatius grown in plant assemblages of varying species richness. Acta Oecologica 39:11–17. doi:10.1016/j.actao.2011.10.002

  59. Peltzer DA (1999) Measuring plant neighbour effects in different systems. Funct Ecol 13:283–284. doi:10.1046/j.1365-2435.1999.013002283.x

  60. Quinos PM, Insausti P, Soriano A (1998) Facilitative effect of Lotus tenuis on Paspalum dilatatum in a lowland grassland of Argentina. Oecologia 114:427–431. doi:10.1007/PL00008819

  61. R Development Core Team (2006) R: A language and environment for statistical compution. Vienna, Austria. ISBN 3-900051-07-0, http://www.r-project.org

  62. Saccone P, Delzon S, Pagès J-P, Brun J-J, Michalet R (2009) The role of biotic interactions in altering tree seedling responses to an extreme climatic event. J Veg Sci 20:403–414. doi:10.1111/j.1654-1103.2009.01012.x

  63. Sadras VO (2005) A quantitative top-down view of interactions between stresses: theory and analysis of nitrogen–water co-limitation in Mediterranean agro-ecosystems. Aust J Agric Res 56:1151. doi:10.1071/AR05073

  64. Schöb C, Armas C, Pugnaire FI (2013) Direct and indirect interactions co-determine species composition in nurse plant systems. Oikos 122:1371–1379. doi:10.1111/j.1600-0706.2013.00390.x

  65. Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, Kühn I, Moora M, Nielsen A, Ohlemüller R, Petanidou T, Potts SG, Pyšek P, Stout JC, Sykes MT, Tscheulin T, Vilà M, Walther G-R, Westphal C, Winter M, Zobel M, Settele J (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev Camb Philos Soc 85:777–795. doi:10.1111/j.1469-185X.2010.00125.x

  66. Soliveres S, García-Palacios P, Maestre FT, Escudero A, Valladares F (2013) Changes in rainfall amount and frequency do not affect the outcome of the interaction between the shrub Retama sphaerocarpa and its neighbouring grasses in two semiarid communities. J Arid Environ 91:104–112. doi:10.1016/j.jaridenv.2012.12.011

  67. Steffens D, Hutsch B, Eschholz T, Losak T, Schubert S (2005) Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity. Plant Soil Environ 51:545–552

  68. Sthultz CM, Gehring CA, Whitham TG (2007) Shifts from competition to facilitation between a foundation tree and a pioneer shrub across spatial and temporal scales in a semiarid woodland. New Phytol 173:135–145. doi:10.1111/j.1469-8137.2006.01915.x

  69. Striker GG, Insausti P, Grimoldi AA, Ploschuk EL, Vasellati V (2005) Physiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber Mill. Plant Soil 276:301–311. doi:10.1007/s11104-005-5084-0

  70. Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

  71. Tremmel D, Bazzaz F (1993) How neighbor canopy architecture affects target plant performance. Ecology 74:2114–2124

  72. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. doi:10.1111/j.1461-0248.2008.01250.x

  73. Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113

  74. Weigelt A, Jolliffe P (2003) Indices of plant competition. J Ecol 91:707–720. doi:10.1046/j.1365-2745.2003.00805.x

  75. White TA, Campbell BD, Kemp PD, Hunt CL (2001) Impacts of extreme climatic events on competition during grassland invasions. Glob Chang Biol 7:1–13. doi:10.1046/j.1365-2486.2001.00381.x

  76. Whittaker RH (1965) Dominance and diversity in land plant communities: Numerical relations of species express the importance of competition in community function and evolution. Science 147:250–260. doi:10.1126/science.147.3655.250

  77. Wilson MV (2007) Measuring the components of competition along productivity gradients. J Ecol 95:301–308. doi:10.1111/j.1365-2745.2007.01215.x

  78. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

  79. Zhang J, Cheng G, Yu F, Kräuchi N, Li M-H (2008) Intensity and importance of competition for a grass (Festuca rubra) and a legume (Trifolium pratense) vary with environmental changes. J Integr Plant Biol 50:1570–1579. doi:10.1111/j.1744-7909.2008.00699.x

Download references

Acknowledgments

K.G. was funded within the FORKAST project by the Bavarian State Ministry of Sciences, Research and the Arts. We thank Jordan Vani and Joseph Premier for proofreading the manuscript in terms of language and style. We also thank the anonymous reviewers for their helpful comments on an earlier version of this manuscript.

Author information

Correspondence to Kerstin Grant.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grant, K., Kreyling, J., Heilmeier, H. et al. Extreme weather events and plant–plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecol Res 29, 991–1001 (2014). https://doi.org/10.1007/s11284-014-1187-5

Download citation

Keywords

  • Plant–plant interactions
  • Climate change
  • Community composition
  • Competitive ability
  • Facilitation
  • Temperate grassland
  • Drought
  • Heavy rainfall