Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Relationship between soil P fractions and microbial biomass in an oligotrophic grassland-desert scrub system


Phosphorus (P) is an essential element of the biosphere, both as a constituent of living organisms and as a regulator of biological processes. The Cuatro Ciénegas Basin in the central Chihuahuan Desert of Mexico is characterized by extreme P oligotrophy. The aim of this study was to quantify P distribution in soil P fractions, P sorption capacity, and P in microbial biomass in a desert scrub and grassland soil system in the Churince area of the Cuatro Ciénegas Basin over summer and winter seasons. Our objective, as part of an exploration of ecosystem functioning, was to ascertain the relationship between soil P fractions and P in microbial biomass. Our results demonstrate a scarcity of P, mainly in grassland, and also a higher P sorption capacity in grassland soil than in desert scrub. Desert scrub soil retained more P (228 ± 5 μg g−1 dry soil) than grassland soil (87 ± 10 μg g−1 dry soil), mainly in inorganic forms, but grassland soil retained more P in accessible organic forms. We suggest that biotic controls regulated by access to water shape the dynamics of soil P availability in the Churince grassland-desert scrub system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Acosta-Martínez V, Acosta-Mercado D, Sotomayor-Ramírez D, Cruz-Rodríguez L (2008) Microbial communities and enzymatic activities under different management in semiarid soils. App Soil Ecol 38:249–260. doi:10.1016/j.apsoil.2007.10.012

  2. Anderson JPE, Domsch KH (1978) Mineralization of bacteria and fungi in chloroform-fumigated soils. Soil Biol Biochem 10:207–213. doi:10.1016/0038-0717(78)90098-6

  3. Baldrian P, Merhautová V, Cajthaml T, Petránková M, Šnajdr J (2010) Small-scale distribution of extracellular enzymes, fungal, and bacterial biomass in Quercus petraea forest topsoil. Biol Fertil Soils 46:717–726. doi:10.1007/s00374-010-0478-4

  4. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26:211–252

  5. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0

  6. Buckingham SE, Neff J, Titiz-Maybach B, Reynolds RL (2010) Chemical and textural controls on phosphorus mobility in drylands of southeastern Utah. Biogeochemistry 100:105–120. doi:10.1007/s10533-010-9408-7

  7. Bünemann EK, Oberson A, Frossard E (eds) (2011) Phosphorus in action: biological processes in soil phosphorus cycling. Springer, Berlin Heidelberg New York. doi:10.1007/978-3-642-15271-9

  8. Cleveland CC, Townsend AR, Constance BC, Ley RE, Schmidt SK (2004) Soil microbial dynamics in Costa Rica: seasonal and biogeochemical constraints. Biotropica 36:184–195. doi:10.1111/j.1744-7429.2004.tb00311.x

  9. Cole CV, Elliott ET, Hunt HW, Coleman DC (1978) Trophic interactions in soils as they affect energy and nutrient dynamics. V. Phosphorus transformations. Microbial Ecol 4:381–387. doi:10.1007/BF02013281

  10. Crews TE, Kitayama K, Fownes J, Herbert D, Mueller-Dombois D, Riley RH, Vitousek PM (1995) Changes in soil phosphorus and ecosystem dynamics across a long soil chronosequence in Hawaii. Ecology 76:1407–1424. doi:10.2307/1938144

  11. Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214. doi:10.1016/0016-7061(94)00023-4

  12. Cross AF, Schlesinger WH (2001) Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry 52:155–172. doi:10.1023/A:1006437504494

  13. DeBruyn JM, Nixon LT, Fawaz MN, Johnson AN, Radosevich (2011) Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. App Environ Microbiol 77:6291–6300. doi:10.1128/AEM.05005-11

  14. Elser JJ, Schampel JH, García-Pichel F, Wade BD, Eguiarte L, Souza V, Escalante A, Farmer JD (2005) Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshwater Biol 50:1808–1825. doi:10.1111/j.1365-2427.2005.01451.x

  15. Froelich PN (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol Oceanogr 33:649–668

  16. Fukushima T, Onuki M, Satoh H, Mino T (2010) Effect of pH reduction on polyphosphate- and glycogen-accumulating organisms in enhanced biological phosphorus removal processes. Water Sci Technol 62:1432–1439. doi:10.1016/S0043-1354(98)00129-8

  17. García E (1988) Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía, Universidad Nacional Autónoma de, Distrito Federal

  18. García H, Ivanova N, Kunin V, Warnecke F, Falk W, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2006) Metagenomic analyses of two enhanced biological phosphorus removal (EBPR) sludge communities. Nature Biotechnol 24:1263–1269. doi:10.1038/NBT1247

  19. Hedley MJ, Stewart WB (1982) Method to measure microbial phosphate in soils. Soil Biol Biochem 14:377–385. doi:10.1016/0038-0717(82)90009-8

  20. Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976. doi:10.2136/sssaj1982.03615995004600050017x

  21. IUSS Working Group WRB (2007) World reference base for soil resources, first update 2007. World Soil Resources Reports No. 103, FAO, Rome

  22. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soil 37:1–16. doi:10.1007/s00374-002-0546-5

  23. Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the K EC value. Soil Biol Biochem 28:33–37. doi:10.1016/0038-0717(95)00102-6

  24. Kononova SV, Nesmeyanova MA (2002) Phosphonates and their degradation by microorganisms. Biochemistry 67:184–195

  25. Lathja K, Schlesinger WH (1988) The biogeochemistry of phosphorus cycling and phosphorus availability along a desert chronosequence. Ecology 69:24–39

  26. Lathja K, Driscoll CT, Jarrell WM, Elliott ET (1999) Soil phosphorus: characterization and total element analysis. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 115–142

  27. Lehmann C, Osleger DA, Montañez IP, Sliter W, Arnaud-Vanneau A, Banner J (1999) Evolution of Cupido and Coahuila carbonate platforms, Early Cretaceous, northeastern Mexico. Geol Soc Am Bull 111:1010–1029. doi:10.1130/0016-7606(1999)111<1010

  28. Levy ET, Schlesinger WH (1999) A comparison of fractionation methods for forms of phosphorus in soils. Biogeochemistry 47:25–38. doi:10.1007/BF00993095

  29. López-Lozano NE, Eguiarte LE, Bonilla-Rosso G, García-Oliva F, Martínez-Piedragil C, Rooks C, Souza V (2012) Bacterial communities and the nitrogen cycle in the gypsum soil of Cuatro Ciénegas Basin, Coahuila: a Mars analogue. Astrobiology 12:699–709. doi:10.1089/ast.2012.0840

  30. Martínez C (2008) Dinámica de nutrientes en dos suelos con diferentes humedades en el valle de Cuatrociénegas, Coahuila. Tesis para obtener el grado de Ingeniera Bioquímica. Instituto Tecnológico de Morelia. Morelia, Mexico

  31. McKee JW, Jones NW, Long LE (1990) Stratigraphy and provenance of strata along the San Marcos fault, central Coahuila, Mexico. Geol Soc Am 102:593–614. doi:10.1130/0016-7606(1990)102<0593

  32. Minckley WL, Cole GA (1968) Preliminary limnologic information on waters of the Cuatro Cienegas Basin, Mexico. Southwest Nat 13:421–431

  33. Minckley TA, Jackson ST (2007) Ecological stability in a changing world? Reassessment of the paleo-environmental history of Cuatrociénegas, Mexico. J Biogeogr 35:188–190

  34. Montgomery DC (1991) Design and analysis of experiments, 3rd edn. Wiley, New York

  35. Mubarak MA, Langer U (2009) Soil enzymes activities in irrigated and rain-fed vertisols of the semi-arid tropics of Sudan. Int J Soil Sci 4:67–79

  36. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

  37. Newman RH, Tate KR (1980) Soil phosphorus characterisation by 31P nuclear magnetic resonance. Commun Soil Sci Plant Anal 11:835–842

  38. Olander LP, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 7:404–419. doi:10.1007/s10021-004-0264-y

  39. Perrot KW (1992) Effect of exchangeable calcium on fractionation of inorganic and organic soil phosphorus. Communications in Soil Sci Plant Anal 23:827–840. doi:10.1080/00103629209368632

  40. Pinkava DJ (1974) Vegetation and flora of the Bolson of Cuatro Cienegas Region, Coahuila, Mexico: IV. Summary, endemism and corrected catalogue. J Arizona-Nevada Acad Sci 19:23–47

  41. R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0, URL http://www.R-project.org

  42. Richardson AE, Pankhurst CE, Doube BE, Gupta VVSR, Grace PR (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems, pp 50–62

  43. Ryan J, Hasan HM, Baasiri M, Tabbara HS (1985) Availability and transformation of applied phosphorus in calcareous Lebanese soils. Soil Sci Soc Am J 49:1215–1220. doi:10.2136/sssaj1985.03615995004900050029x

  44. Rzedowski J (2006) Vegetación de México. 1ra. Edición digital, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México. http://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMx_Cont.pdf

  45. Selmants PC, Hart SC (2010) Phosphorus and soil development: does the Walker and Syers model apply to semiarid ecosystems? Ecology 91:474–484. doi:10.1890/09-0243.1

  46. Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lourdes L, Rodríguez-Martínez JM, Soberón X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan Desert. Proc Natl Acad Sci 103:6565–6570. doi:10.1073/pnas.0601434103

  47. Stewart JWB, Tiessen H (1987) Dynamics of soil organic phosphorus. Biogeochemistry 4:41–60. doi:10.1007/BF02187361

  48. Tapia-Torres Y (2010) Efecto del tipo de vegetación en la dinámica de nutrientes y en la estructura de las comunidades bacterianas del suelo en el valle de Cuatro Ciénegas, Coahuila. Universidad Nacional Autónoma de México, Morelia

  49. Tate KR, Newman RH (1982) Phosphorus fractions of a climosequence of soils in New Zealand tussock grassland. Soil Biol Biochem 14:191–196

  50. Tiessen H, Moir JO (1993) Characterisation of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. CRC Press, Boca Raton, pp 75–86

  51. Tiessen H, Stewart JWB, Cole CV (1984) Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Sci Soc Am J 48:853–858. doi:10.2136/sssaj1984.03615995004800040031x

  52. Vance ED, Brookes AC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

  53. Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19. doi:10.1016/0016-7061(76)90066-5

  54. Yuan G, Lavkulich LM (1994) Phosphate sorption in relation to extractable iron and aluminum in Spodosols. Soil Sci Soc Am J 58:343–346. doi:10.2136/sssaj1994.03615995005800020013x

  55. Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Yamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163. doi:10.1099/ijs.0.02520-0

Download references


We are grateful to Keith MacMillan for English revision, two anonymous reviewers for useful suggestions, Rodrigo Velázquez-Durán for assistance with soil sampling and chemical analysis, and CONANP for permission to collect soil. This study was funded by a CTIC-UNAM postdoctoral scholarship (to YP), by a PAPIIT-DGAPA-UNAM (grant: Análisis de la vulnerabilidad de la dinámica de nutrientes en un ecosistema árido de México, IN204013) and Fundación Carlos Slim. This work constituted a partial fulfillment of requirements of the Graduate Program in Biological Sciences of the National Autonomous University of México (UNAM). YT-T acknowledges a scholarship and financial support provided by the National Council of Science and Technology (CONACyT; scholarship number 210603) and UNAM.

Author information

Correspondence to Yareni Perroni.

Electronic supplementary material

About this article

Cite this article

Perroni, Y., García-Oliva, F., Tapia-Torres, Y. et al. Relationship between soil P fractions and microbial biomass in an oligotrophic grassland-desert scrub system. Ecol Res 29, 463–472 (2014). https://doi.org/10.1007/s11284-014-1138-1

Download citation


  • P soil fractions
  • Microbial P
  • Chihuahuan Desert
  • Cuatro Ciénegas Basin
  • P sorption capacity