Ecological Research

, Volume 29, Issue 3, pp 441–454 | Cite as

Simulation of N2O emissions and nitrate leaching from plastic mulch radish cultivation with LandscapeDNDC

  • Youngsun Kim
  • Sina Berger
  • Janine Kettering
  • John Tenhunen
  • Edwin Haas
  • Ralf Kiese
Original Article

Abstract

Radish is one of the major dry field crops in Asia commonly grown with plastic mulch and high rates of N fertilization, and potentially harming the environment due to N2O emissions and nitrate leaching. Despite the widespread use of plastic mulch, biogeochemical models so far do not yet consider impacts of mulch on soil environmental conditions and biogeochemistry. In this study, we adapted and successfully tested the LandscapeDNDC model against field data by simulating crop growth, C and N turnover and associated N2O emissions as well as nitrate leaching for radish cultivation with plastic mulch and in conjunction with different rates of N fertilization (465–765 kg N ha−1 year−1). Due to the sandy soil texture and monsoon climate, nitrate leaching with rates up to 350 kg N ha−1 year−1 was the dominant reason for overall low nitrogen use efficiency (32–43 %). Direct or indirect N2O emissions (calculated from simulated nitrate leaching rates and IPCC EFind = 0.0075) ranged between 2 and 3 kg N ha−1 year−1, thus contributing an equal amount to total field emissions of about 5 kg N ha−1 year−1. Based on our results, emission factors for direct N2O emissions ranged between 0.004 and 0.005. These values are only half of the IPCC default value (0.01), demonstrating the need of biogeochemical models for developing site and/or region specific EFs. Simulation results also revealed that changes in agricultural management by applying the fertilizer only to the rows would be an efficient mitigation strategy, effectively decreasing field nitrate leaching and N2O emissions by 50–60 %.

Keywords

Biogeochemical modeling LandscapeDNDC N2Nitrate leaching Plastic mulch 

References

  1. Akoumianakis KA, Karapanos IC, Giakoumaki M, Alexopoulos AA, Passam HC (2011) Nitrogen, season and cultivar affect radish growth, yield, sponginess and hollowness. Int J Plant Prod 5(2):111–120Google Scholar
  2. Arnhold S, Ruidisch M, Bartsch S, Shope CL, Huwe B (2013) Simulation of runoff patterns and soil erosion on mountainous farmland with and without plastic covered ridge-furrows cultivation in South Korea. Trans ASABE 56(22):667–679. doi:10.13031/2013.42671 CrossRefGoogle Scholar
  3. Berger S, Kim Y, Kettering J, Gebauer G (2013) Plastic mulching in agriculture—friend or foe of N2O emissions? Agric Ecosyst Environ 167C:43–51. doi:10.1016/j.agee.2013.01.010 CrossRefGoogle Scholar
  4. Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 162:145–173. doi:10.1111/aab.12014 CrossRefGoogle Scholar
  5. Chakraborty D, Garg RN, Tomar RK, Singh R, Sharma SK, Singh RK, Trivedi SM, Mittal RB, Sharma PK, Kamble KH (2010) Synthetic and organic mulching and nitrogen effect on winter wheat (Triticum aestivum L.) in a semi-arid environment. Agric Water Manag 97:738–748. doi:10.1016/j.agwat.2010.01.006 CrossRefGoogle Scholar
  6. Chirinda N, Kracher D, Lægdsmand M, Porter J, Olesen J, Petersen B, Doltra J, Kiese R, Butterbach-Bahl K (2011) Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant Soil 343:139–160. doi:10.1007/s11104-010-0596-7 CrossRefGoogle Scholar
  7. Cho JY (2003) Seasonal runoff estimation of N and P in a paddy field of central Korea. Nutr Cycl Agroecosyst 65:43–52. doi:10.1023/a:1021819014494 CrossRefGoogle Scholar
  8. Cho S, Han K, Cho J (1996) Nitrate reductase activity by change of nitrate form nitrogen content on growth stage of radish. Korean J Environ Agric 15(3):383–390 (in Korean)Google Scholar
  9. Deng J, Zhu B, Zhou Z, Zheng X, Li C, Wang T, Tang J (2011) Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC. J Geophys Res 116:G02020. doi:10.1029/2010jg001609 Google Scholar
  10. Fisher PD (1995) An alternative plastic mulching system for improved water management in dryland maize production. Agric Water Manag 27:155–166. doi:10.1016/0378-3774(95)01134-5 CrossRefGoogle Scholar
  11. Giltrap DL, Li C, Saggar S (2010) DNDC: a process-based model of greenhouse gas fluxes from agricultural soils. Agric Ecosyst Environ 136:292–300. doi:10.1016/j.agee.2009.06.014 CrossRefGoogle Scholar
  12. Haas E, Klatt S, Fröhlich A, Kraft P, Werner C, Kiese R, Grote R, Breuer L, Butterbach-Bahl K (2013) LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landsc Ecol 28:615–636. doi:10.1007/s10980-012-9772-x CrossRefGoogle Scholar
  13. Haraguchi T, Marui A, Mori K, Nakano Y (2003) Movement of water collected by vegetables in plastic-mulching field. J Fac Agric Kyushu Univ 48(1–2):237–245Google Scholar
  14. Haraguchi T, Marui A, Yuge K, Nakano Y, Mori K (2004) Effect of plastic-film mulching on leaching of nitrate nitrogen in an upland field converted from paddy. Paddy Water Environ 2:67–72. doi:10.1007/s10333-004-0042-7 CrossRefGoogle Scholar
  15. IPCC (Intergovernmental Panel on Climate Change) (2006) IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Institute for Global Environmental Strategies (IGES), HayamaGoogle Scholar
  16. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Islam T, Hasegawa I, Ganno K, Kihou N, Momonoki T (1994) Vinyl-film mulch: a practice for sweet potato (Ipomoea Batatas Lam. var. Edulis Makino) cultivation to reduce nitrate leaching. Agric Water Manag 26:1–11. doi:10.1016/0378-3774(94)90020-5 CrossRefGoogle Scholar
  18. IUSS WRB Working Group (2007) World Reference Base for Soil Resources 2006, 1st update 2007. World Soil Resources Reports No. 103. FAO, RomeGoogle Scholar
  19. Jeon WT, Choi BS, El-Azeem SAMA, Ok YS (2011) Effects of green manure crops and mulching technology on reduction in herbicide and fertilizer use during rice cultivation in Korea. Afr J Biotechnol 10(1):1–8. doi:10.5897/AJB10.1657 Google Scholar
  20. Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529. doi:10.1007/s13593-011-0068-3 CrossRefGoogle Scholar
  21. KEEI (Korea Energy Economics Institute) (2009) Greenhouse gas emission trends 2006. KEEI, Uiwang City (in Korean)Google Scholar
  22. Kesik M, Ambus P, Baritz R, Brüggemann N, Butterbach-Bahl K, Damm M, Duyzer J, Horváth L, Kiese R, Kitzler B, Leip A, Li C, Pihlatie M, Pilegaard K, Seufert G, Simpson D, Skiba U, Smiatek G, Vesala T, Zechmeister-Boltenstern S (2005) Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2:353–375CrossRefGoogle Scholar
  23. Kettering J, Ruidisch M, Gaviria C, Ok Y, Kuzyakov Y (2013) Fate of fertilizer 15N in intensive ridge cultivation with plastic mulching under a monsoon climate. Nutr Cycl Agroecosyst 95:57–72. doi:10.1007/s10705-012-9548-3 CrossRefGoogle Scholar
  24. Kiese R, Heinzeller C, Werner C, Wochele S, Grote R, Butterbach-Bahl K (2011) Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model. Environ Pollut 159:3204–3214. doi:10.1016/j.envpol.2011.05.004 PubMedCrossRefGoogle Scholar
  25. Kwabiah AB (2004) Growth and yield of sweet corn (Zea mays L.) cultivars in response to planting date and plastic mulch in a short-season environment. Sci Hortic 102:147–166. doi:10.1016/j.scienta.2004.01.007 CrossRefGoogle Scholar
  26. Lamont WJ (2005) Plastics: modifying the microclimate for the production of vegetable crops. HortTechnology 15:477–481Google Scholar
  27. Lee G, Lee J, Zhang Y, Hwang S, Park C, Joo J (2009) Recommendations of NPK fertilizers based on soil testing and yield response for radish in highland. Korean J Soil Sci Fertil 42(3):167–171 (in Korean)Google Scholar
  28. Lee G, Lee J, Ryu J, Hwang S, Yang J, Joo J, Jung Y (2010) Status and soil management problems of highland agriculture of the main mountainous region in the South Korea. ln: Gilkes RJ, Prakongkep N (eds) Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world. Symposium 3.2.1 Highland agriculture and conservation of soil and water 2010, Brisbane, pp 154–157Google Scholar
  29. Li C (2007) Quantifying greenhouse gas emissions from soils: scientific basis and modeling approach. In: Soil science & plant nutrition, pp 344–352Google Scholar
  30. Li C, Zhuang Y, Cao M, Crill P, Dai Z, Frolking S, Moore B III, Salas W, Song W, Wang X (2001) Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China. Nutr Cycl Agroecosyst 60:159–175. doi:10.1023/a:1012642201910 CrossRefGoogle Scholar
  31. Li F-M, Wang J, Xu J-Z, Xu H-L (2004) Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid Loess Plateau of China. Soil Tillage Res 78:9–20. doi:10.1016/j.still.2003.12.009 CrossRefGoogle Scholar
  32. Li C, Farahbakhshazad N, Jaynes DB, Dinnes DL, Salas W, McLaughlin D (2006) Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecol Model 196:116–130. doi:10.1016/j.ecolmodel.2006.02.007 CrossRefGoogle Scholar
  33. Liakatas A, Clark JA, Monteith JL (1986) Measurements of the heat balance under plastic mulches. Part I. Radiation balance and soil heat flux. Agric For Meteorol 36:227–239. doi:10.1016/0168-1923(86)90037-7 CrossRefGoogle Scholar
  34. Liu X, Ju X, Zhang F, Pan J, Christie P (2003) Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain. Field Crops Res 83:111–124. doi:10.1016/s0378-4290(03)00068-6 CrossRefGoogle Scholar
  35. Nishimura S, Komada M, Takebe M, Yonemura S, Kato N (2012) Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field. Biol Fertil Soils 48:787–795. doi:10.1007/s00374-012-0672-7 CrossRefGoogle Scholar
  36. Park W, Jeong B, Song Y, Jeon H, Jeong K, Lee C (2006) Standard rates of fertilizer application for each crop Rural Development Administration, pp 87–89Google Scholar
  37. Perego A, Basile A, Bonfante A, De Mascellis R, Terribile F, Brenna S, Acutis M (2012) Nitrate leaching under maize cropping systems in Po Valley (Italy). Agric Ecosyst Environ 147:57–65. doi:10.1016/j.agee.2011.06.014 CrossRefGoogle Scholar
  38. RDA (Rural Development Administration) (2002) Cultivation techniques of radish. RDA, Suwon City (in Korean)Google Scholar
  39. RDA (Rural Development Administration) (2006) The standard rates of fertilizer for crops. RDA, Suwon City (in Korean)Google Scholar
  40. Romic D, Romic M, Borosic J, Poljak M (2003) Mulching decreases nitrate leaching in bell pepper (Capsicum annuum L.) cultivation. Agric Water Manag 60:87–97. doi:10.1016/s0378-3774(02)00168-3 CrossRefGoogle Scholar
  41. Sirtautas R, Samuolienė G, Brazaitytė A, Duchovskis P (2011) Temperature and photoperiod effects on photosynthetic indices of radish (Raphanus sativus L.). Žemdirbystė (Agriculture) 98:57–62Google Scholar
  42. Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag 20:255–263. doi:10.1111/j.1475-2743.2004.tb00366.x CrossRefGoogle Scholar
  43. Smith WN, Desjardins RL, Grant BB, Li C, Lemke R, Rochette P, Corre MD, Pennock D (2002) Testing the DNDC model using N2O emissions at two experimental sites in Canada. Can J Soil Sci 82:365–374CrossRefGoogle Scholar
  44. Smith WN, Grant BB, Desjardins RL, Worth D, Li C, Boles SH, Huffman EC (2010) A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agric Ecosyst Environ 136:301–309. doi:10.1016/j.agee.2009.12.008 CrossRefGoogle Scholar
  45. Stange F, Butterbach-Bahl K, Papen H, Zechmeister-Boltenstern S, Li C, Aber J (2000) A process-oriented model of N2O and NO emissions from forest soils: 2. Sensitivity analysis and validation. J Geophys Res Atmos 105:4385–4398. doi:10.1029/1999jd900948 CrossRefGoogle Scholar
  46. Sun Y, Hu K, Zhang K, Jiang L, Xu Y (2012) Simulation of nitrogen fate for greenhouse cucumber grown under different water and fertilizer management using the EU-Rotate_N model. Agric Water Manag 112:21–32. doi:10.1016/j.agwat.2012.06.001 CrossRefGoogle Scholar
  47. Vries W et al (2005) Use of measurements and models to improve the national IPCC based assessments of soil emissions of nitrous oxide. Environ Sci 2:217–233CrossRefGoogle Scholar
  48. Wan Y, El-Swaify SA (1999) Runoff and soil erosion as affected by plastic mulch in a Hawaiian pineapple field. Soil Tillage Res 52:29–35. doi:10.1016/s0167-1987(99)00055-0 CrossRefGoogle Scholar
  49. Wang Y, Xie Z, Malhi SS, Vera CL, Zhang Y, Wang J (2009) Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China. Agric Water Manag 96:374–382. doi:10.1016/j.agwat.2008.09.012 CrossRefGoogle Scholar
  50. Xiong Z, Xie Y, Xing G, Zhu Z, Butenhoff C (2006) Measurements of nitrous oxide emissions from vegetable production in China. Atmos Environ 40:2225–2234. doi:10.1016/j.atmosenv.2005.12.008 CrossRefGoogle Scholar
  51. Zhang H, Liu Q, Yu X, Lü G, Wu Y (2012) Effects of plastic mulch duration on nitrogen mineralization and leaching in peanut (Arachis hypogaea) cultivated land in the Yimeng Mountainous Area, China. Agric Ecosyst Environ 158:164–171. doi:10.1016/j.agee.2012.06.009 CrossRefGoogle Scholar
  52. Zhao H, Xiong Y-C, Li F-M, Wang R-Y, Qiang S-C, Yao T-F, Mo F (2012) Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric Water Manag 104:68–78. doi:10.1016/j.agwat.2011.11.016 CrossRefGoogle Scholar
  53. Zhou M, Zhu B, Butterbach-Bahl K, Zheng X, Wang T, Wang Y (2013) Nitrous oxide emissions and nitrate leaching from a rain-fed wheat-maize rotation in the Sichuan Basin, China. Plant Soil 362:149–159. doi:10.1007/s11104-012-1269-5 CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2014

Authors and Affiliations

  • Youngsun Kim
    • 1
    • 2
  • Sina Berger
    • 3
  • Janine Kettering
    • 4
  • John Tenhunen
    • 2
  • Edwin Haas
    • 1
  • Ralf Kiese
    • 1
  1. 1.Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research (IMK-IFU)Garmisch-PartenkirchenGermany
  2. 2.Department of Plant EcologyUniversity of BayreuthBayreuthGermany
  3. 3.BayCEER-Laboratory of Isotope BiogeochemistryUniversity of BayreuthBayreuthGermany
  4. 4.Department of Agroecosystem ResearchUniversity of BayreuthBayreuthGermany

Personalised recommendations