Ecological Research

, Volume 28, Issue 6, pp 1019–1028 | Cite as

Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

  • Samuli Helama
  • Birgitte W. Arentoft
  • Olivier Collin-Haubensak
  • Michael D. Hyslop
  • Charlotte K. Brandstrup
  • Hanna M. Mäkelä
  • QinHua Tian
  • Rob Wilson
Original Article


Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L.) growing in boreal forest in eastern Finland. Riparian and upland chronologies were compared to examine differences in the pine growth variability and growth response to climatic variation in the two habitats. It was found that the climatic variables showing statistically significant correlations with the tree-ring chronologies were related to snow conditions at the start of the growing season. Deeper snowpack led to reduced upland pine growth, possibly due to delayed snowmelt and thus postponed onset of the growing season. Warm late winters were followed by increased riparian pine growth because of earlier start of the snow-melt season and thus a lower maximum early summer lake level. Moreover, riparian pines reacted negatively to increased rainfall in June, whereas the upland pines showed a positive response. Latewood growth reacted significantly to summer temperatures. The BI chronology showed a strong correlation with warm-season temperatures, indicating an encouraging possibility of summer temperature reconstruction using middle/south boreal pine tree-ring archives.


Blue intensity Dendrochronology Radial growth Lake shore Pinus sylvestris Tree ring 



This study was largely conducted during the pre-conference fieldweek of the World Dendro 2010, the 8th International Conference on Dendrochronology, at the Mekrijärvi Research Station, University of Eastern Finland, also supported by The Bert Bolin Centre for Climate Research, Stockholm University. We thank the organizers of the fieldweek, Taneli Kolström (University of Eastern Finland), Paul J. Krusic, Håkan Grudd, and Björn Gunnarsson (Stockholm University) for hosting the fieldweek and for preparing the excellent working conditions at the locality. We also wish to thank all participants of the fieldweek for discussions and inspiring atmosphere during those days. Two anonymous reviewers are thanked for their constructive comments. This study was also supported by the Academy of Finland.

Supplementary material

11284_2013_1084_MOESM1_ESM.pdf (155 kb)
Supplementary material 1 (PDF 155 kb)


  1. Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 3:169–211Google Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control AC 19:716–723Google Scholar
  3. Biondi F, Swetnam TW (1987) Box-Jenkins models of forest interior tree-ring chronologies. Tree Ring Bull 47:71–96Google Scholar
  4. Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311CrossRefGoogle Scholar
  5. Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. Holden-Day, San FranciscoGoogle Scholar
  6. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber HF, Karlen W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119Google Scholar
  7. Campbell R, McCarroll D, Loader NJ, Grudd H, Robertson I, Jalkanen R (2007) Blue intensity in Pinus sylvestris tree-rings: developing a new paleoclimate proxy. The Holocene 17:821–828CrossRefGoogle Scholar
  8. Cook ER (1985) A time series analysis approach to tree-ring standardization. PhD dissertation, University of Arizona, TucsonGoogle Scholar
  9. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53Google Scholar
  10. Cook E, Briffa KR, Shiyatov S, Mazepa V (1990a) Tree-ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental science. Kluwer Academic Publishers, Dordrecht, pp 104–123CrossRefGoogle Scholar
  11. Cook E, Shiyatov S, Mazepa V (1990b) Estimation of the mean chronology. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental science. Kluwer Academic Publishers, Dordrecht, pp 123–132CrossRefGoogle Scholar
  12. Dore MHI (2005) Climate change and changes in global precipitation patterns: what do we know? Environ Int 31:1167–1181PubMedCrossRefGoogle Scholar
  13. Eriksson S (1951) Undersökningar angående sambandet mellan grundvattenståndet och barrskogens tillväxt. Kungl Vattenfallsstyrelsen Förrådsbyrån, Stockholm, p 65Google Scholar
  14. Eronen M, Zetterberg P, Briffa KR, Lindholm M, Meriläiinen J, Timonen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland: part 1, chronology construction and initial inferences. Holocene 12:673–680CrossRefGoogle Scholar
  15. Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Büntgen U (2012) Orbital forcing of tree-ring data. Nat Clim Change 2:862–866CrossRefGoogle Scholar
  16. Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res. doi: 10.1029/2005JD005965 Google Scholar
  17. Fritts HC (1976) Tree rings and climate. Academic Press, New YorkGoogle Scholar
  18. Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188CrossRefGoogle Scholar
  19. Fritts HC, Mosimann JE, Bottorff CP (1969) A revised computer program for standardizing tree-ring series. Tree Ring Bull 29:15–20Google Scholar
  20. Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millenial timescales. Holocene 12:657–665CrossRefGoogle Scholar
  21. Helama S, Holopainen J, Timonen M, Ogurtsov MG, Lindholm M, Meriläinen J, Eronen M (2004a) Comparison of living-tree and subfossil ringwidths with summer temperatures from 18th, 19th and 20th centuries in northern Finland. Dendrochronologia 21:147–154CrossRefGoogle Scholar
  22. Helama S, Lindholm M, Timonen M, Eronen M (2004b) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor Appl Climatol 79:239–254CrossRefGoogle Scholar
  23. Helama S, Lindholm M, Meriläinen J, Timonen M, Eronen M (2005) Multicentennial ring-width chronologies of Scots pine along north-south gradient across Finland. Tree Ring Res 61:21–32CrossRefGoogle Scholar
  24. Helama S, Mielikäinen K, Timonen M, Eronen M (2008a) Finnish supra-long tree-ring chronology extended to 5634 BC. Norsk Geografisk Tidsskr 62:271–277CrossRefGoogle Scholar
  25. Helama S, Vartiainen M, Kolström T, Peltola H, Meriläinen J (2008b) X-ray microdensitometry applied to subfossil tree-rings: growth characteristics of ancient pines from the southern boreal forest zone in Finland at intra-annual to centennial time-scales. Veg Hist Archaeobot 17:675–686CrossRefGoogle Scholar
  26. Helama S, Läänelaid A, Tietäväinen H, Macias Fauria M, Kukkonen IT, Holopainen J, Nielsen JK, Valovirta I (2010a) Late Holocene climatic variability reconstructed from incremental data from pines and pearl mussels—a multi-proxy comparison of air and subsurface temperatures. Boreas 39:734–748CrossRefGoogle Scholar
  27. Helama S, Macias Fauria M, Mielikäinen K, Timonen M, Eronen M (2010b) Sub-Milankovitch solar forcing of past climates: mid and late Holocene perspectives. GSA Bull 122:1981–1988CrossRefGoogle Scholar
  28. Helama S, Vartiainen M, Kolström T, Meriläinen J (2010c) Dendrochronological investigation of wood extractives. Wood Sci Technol 44:335–351CrossRefGoogle Scholar
  29. Helama S, Tuomenvirta H, Venäläinen A (2011) Boreal and subarctic soils under climatic change. Global Planet Change 79:37–47CrossRefGoogle Scholar
  30. Helama S, Bégin Y, Vartiainen M, Peltola H, Kolström T, Meriläinen J (2012a) Quantifications of dendrochronological information from contrasting microdensitometric measuring circumstances of experimental wood samples. Appl Radiat Isot 70:1014–1023PubMedCrossRefGoogle Scholar
  31. Helama S, Läänelaid A, Raisio J, Tuomenvirta H (2012b) Mortality of urban pines in Helsinki explored using tree rings and climate records. Trees 26:353–362CrossRefGoogle Scholar
  32. Helama S, Seppä H, Bjune AE, Birks HJB (2012c) Fusing pollen-stratigraphic and dendroclimatic proxy data to reconstruct summer temperature variability during the past 7.5 ka in subarctic Fennoscandia. J Paleolimnol 48:272–286CrossRefGoogle Scholar
  33. Helama S, Mielikäinen K, Timonen M, Herva H, Tuomenvirta H, Venäläinen A (2013) Regional climatic signals in Scots pine growth with insights into snow and soil associations. Dendrobiology 70:27–34CrossRefGoogle Scholar
  34. Henttonen H (1984) The dependence of annual ring indices on some climatic factors. Acta For Fenn 186:1–38Google Scholar
  35. Hilasvuori E, Berninger F, Sonninen E, Tuomenvirta H, Jungner H (2009) Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J Quat Sci 24:469–480CrossRefGoogle Scholar
  36. Hundhausen U (2004) The climate signal of tree-rings in Scots pine (Pinus sylvestris L.) living along lakeshores in northern Norway. A contribution to the dendroclimatological interpretation of subfossil pines. Diplomarbeit, Zur Erlangung des akademischen Grades, Diplom-Holzwirt, Im Fachbereich Biologie der Universität HamburgGoogle Scholar
  37. Jalkanen R (1993) Defoliation of pines caused by injury to roots resulting from low temperatures. Finn For Res Inst Res Pap 451:77–88Google Scholar
  38. Kirchhefer AJ (2000) Dendroclimatology on Scots pine (Pinus sylvestris L.) in northern Norway. Doctoral dissertation. Department of Biology, Faculty of Science, University of Tromso, NorwayGoogle Scholar
  39. Kirdyanov A, Hughes M, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17:61–69CrossRefGoogle Scholar
  40. Kozlowski TT (2002) Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands 22:550–561CrossRefGoogle Scholar
  41. Kuusisto E (2006) Lake and river systems in Finland. Finn Environ 23:49–58Google Scholar
  42. Linderholm HW, Gunnarson BE (2005) Summer temperature variability in central Scandinavia during the last 3600 years. Geogr Ann 87A:231–241CrossRefGoogle Scholar
  43. Mátyás C, Ackzell L, Samuel CJA (2004) EUFORGEN technical guidelines for genetic conservation and use for Scots pine (Pinus sylvestris). International Plant Genetic Resources Institute, RomeGoogle Scholar
  44. McCarroll D, Pettigrew E, Luckman A, Guibal F, Edouard JL (2002) Blue reflectance provides a surrogate for latewood density of high-latitude pine tree-rings. Arct Antarct Alp Res 34:450–453CrossRefGoogle Scholar
  45. Melvin TM, Grudd H, Briffa KR (2013) Potential bias in ‘updating’ tree-ring chronologies using regional curve standardisation: re-processing 1500 years of Torneträsk density and ring-width data. Holocene 23:364–373CrossRefGoogle Scholar
  46. Miina J (2000) Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecol Model 132:259–273CrossRefGoogle Scholar
  47. Moir AK, Leroy SAG, Helama S (2011) Role of substrate on the dendroclimatic response of Scots pine from varying elevations in northern Scotland. Can J For Res 41:822–838CrossRefGoogle Scholar
  48. Monserud RA (1986) Time-series analyses of tree-ring chronologies. For Sci 32:349–372Google Scholar
  49. Mosteller F, Tukey JW (1977) Data analysis and regression: a second course in statistics. Addison-Wesley, ReadingGoogle Scholar
  50. Musselman KN, Molotch NP, Brooks PD (2008) Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest. Hydrol Process 22:2767–2776CrossRefGoogle Scholar
  51. Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–658CrossRefGoogle Scholar
  52. Räisänen J (2007) How reliable are climate models? Tellus 59A:2–29Google Scholar
  53. Räisänen J, Joelsson R (2001) Changes in average and extreme precipitation in two regional climate model experiments. Tellus 53A:547–566Google Scholar
  54. Schweingruber FH, Bartholin TS, Schär E, Briffa KR (1988) Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17:559–566CrossRefGoogle Scholar
  55. Sutinen M-L, Holappa T, Kujala K (1999) Seasonal changes in soil temperature and in the frost hardiness of Scots pine roots under subarctic conditions: comparison with soil temperature and snow-cover under different simulated winter conditions. Phyton 39:213–218Google Scholar
  56. Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int J Climatol 30:2247–2256CrossRefGoogle Scholar
  57. Tuononen E, Vähäsöyrinki E, Österlund P (1981) Effects of water level fluctuations on land cultivation and on the stand of trees on lake shores. Natl Board Waters Rep 206:1–125Google Scholar
  58. Vaganov EA, Hughes MK, Kirdyanov AV, Schweinguber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151CrossRefGoogle Scholar
  59. Wigley TML, Briffa KR, Jones PD (1984) On the average of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  60. Wilson R, Loader N, Rydval M, Paton H, Frith A, Mills C, Crone A, Edwards C, Larsson L, Gunnarson B (2011) Reconstructing Holocene climate from tree rings—the potential for a long chronology from the Scottish Highlands. Holocene 22:3–11CrossRefGoogle Scholar
  61. Yamaguchi DK (1991) A simple method for crossdating increment cores from living trees. Can J For Res 21:414–416CrossRefGoogle Scholar
  62. Ylhäisi JS, Tietäväinen H, Peltonen-Sainio P, Venäläinen A, Eklund J, Räisänen J, Jylhä K (2010) Growing season precipitation in Finland under recent and projected climate. Nat Hazards Earth Syst Sci 10:1563–1574CrossRefGoogle Scholar
  63. Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys. doi: 10.1029/2004RG000157 Google Scholar
  64. Zhang T, Barry RG, Gilichinsky D, Bykhovets SS, Sorokovikov VA, Ye J (2001) An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Clim Change 49:41–76CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2013

Authors and Affiliations

  • Samuli Helama
    • 1
  • Birgitte W. Arentoft
    • 2
  • Olivier Collin-Haubensak
    • 3
  • Michael D. Hyslop
    • 4
  • Charlotte K. Brandstrup
    • 5
  • Hanna M. Mäkelä
    • 6
  • QinHua Tian
    • 7
  • Rob Wilson
    • 8
  1. 1.Finnish Forest Research InstituteRovaniemiFinland
  2. 2.Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
  3. 3.UQÀM-Institut des sciences de l’environnementMontrealCanada
  4. 4.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  5. 5.Department of Forest and LandscapeUniversity of CopenhagenFrederiksberg CDenmark
  6. 6.Finnish Meteorological InstituteHelsinkiFinland
  7. 7.National Climate CenterBeijingChina
  8. 8.School of Geography and GeosciencesUniversity of St. AndrewsFifeScotland, UK

Personalised recommendations