Ecological Research

, Volume 28, Issue 4, pp 663–672 | Cite as

Geographic association and temporal variation of chemical and physical defense and leaf damage in Datura stramonium

  • Guillermo Castillo
  • Laura L. Cruz
  • Johnattan Hernández-Cumplido
  • Ken Oyama
  • César Mateo Flores-Ortiz
  • Juan Fornoni
  • Pedro L. Valverde
  • Juan Núñez-Farfán
Original Article


The evolution of plant defense traits has traditionally been explained trough the “coevolutionary arms race” between plants and herbivores. According to this, specialist herbivores have evolved to cope effectively with the defensive traits of their host plants and may even use them as a cue for host location. We analyzed the geographic association between leaf trichomes, two tropane alkaloids (putative resistance traits), and leaf damage by herbivores in 28 populations of Datura stramonium in central Mexico. Since the specialist leaf beetles Epitrix parvula and Lema trilineata are the main herbivores of D. stramonium in central Mexico, we predicted a positive association between plant defense and leaf damage across populations. Also, if physical environmental conditions (temperature or precipitation) constrain the expression of plant defense, then the geographic variation in leaf damage should be explained partially by the interaction between defensive traits and environmental factors. Furthermore, we studied the temporal and spatial variation in leaf trichome density and leaf damage in five selected populations of D. stramonium sampled in two periods (1997 vs. 2007). We found a positive association between leaf trichomes density and atropine concentration with leaf damage across populations. The interaction between defensive traits and water availability in each locality had a significant effect on the geographic variation in leaf damage. Differences among populations in leaf trichome density are maintained over time. Our results indicate that local plant–herbivore interaction plays an important role in shaping the geographic and temporal variation in plant defense in D. stramonium.


Datura stramonium Geographic variation Herbivory Tropane alkaloids Leaf trichomes Plant defense Solanaceae 



We thank Rosalinda Tapia López, Blanca Hernández, Martha Macías Rubalcava, María Teresa Caudillo, Luis Barbo, and Martha Urzúa Meza for laboratory assistance during HPLC quantification, and to the members of Laboratorio de Genética Ecológica y Evolución for logistic support and field assistance. We also thank the Laboratorio de Biogeoquímica FES-Iztacala and Laboratorio de Alelopatía of Instituto de Ecología, UNAM, for providing the facilities for laboratory work. This paper constitutes a partial fulfillment of the Graduate Program in Biological Sciences of the National Autonomous University of México (UNAM). GC acknowledges Lynna M. Kiere for her helpful comments on the MS and the scholarship and financial support provided by the National Council of Science and Technology (CONACyT), and UNAM. The study was funded by a CONACyT grant 81490 “Evolución de la defensa en plantas contra sus enemigos naturales” to JNF.

Supplementary material

11284_2013_1059_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 59 kb)
11284_2013_1059_MOESM2_ESM.tif (452 kb)
S 2. Interaction surfaces between predictor variables resulting from the multiple regression model. a Leaf atropine concentration (in 2.5 mm2) × Lang’s Index (mg/g), and b Leaf scopolamine concentration × mean population plant size. Response variable was the proportion leaf damage. (TIFF 452 kb)
11284_2013_1059_MOESM3_ESM.doc (34 kb)
Supplementary material 3 (DOC 34 kb)


  1. Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:132–149CrossRefGoogle Scholar
  2. Agrawal AA, Heil M (2012) Synthesizing specificity: multiple approaches to understanding the attack and defense of plants. Trends Plant Sci 17:239–242PubMedCrossRefGoogle Scholar
  3. Alexander J et al (2008) Tropane alkaloids (from Datura sp.) as undesirable substances in animal feed. EFSA J 691:1–55Google Scholar
  4. Alves M, Sartoratto A, Trigo J (2007) Scopolamine in Brugmansia suaveolens (Solanaceae): defense, allocation, costs, and induced response. J Chem Ecol 33:297–309. doi:10.1007/s10886-006-9214-9 PubMedCrossRefGoogle Scholar
  5. Andersson HC, Brimer L, Cottrill B, Fink-Gremmels J, Jaroszewski J, Sørensen H (2008) Tropane alkaloids (from Datura sp.) as undesirable substances in animal feed: scientific opinion of the panel on contaminants in the food chain. EFSA J (691):1–55Google Scholar
  6. Andraca-Gómez G (2009) Genética de poblaciones comparada entre Datura stramonium y su herbívoro especialista Lema trilineata. Masters thesis, UNAMGoogle Scholar
  7. Avery A, Satina S, Rietsma J (1959) Blakeslee: the genus Datura, Chronica Botánica. Ronald Press Co, New YorkGoogle Scholar
  8. Ballhorn DJ, Kautz S, Heil M, Hegeman AD (2009) Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PLoS ONE 4:e5450PubMedCrossRefGoogle Scholar
  9. Baricevic D, Umek A, Kreft S, Maticic B, Zupancic A (1999) Effect of water stress and nitrogen fertilization on the content of hyoscyamine and scopolamine in the roots of deadly nightshade (Atropa belladonna). Environ Exp Bot 42:17–24. doi:10.1016/s0098-8472(99)00014-3 CrossRefGoogle Scholar
  10. Bello-Bedoy R, Núñez-Farfán J (2010) Cost of inbreeding in resistance to herbivores in Datura stramonium. Ann Bot 105:747–753. doi:10.1093/aob/mcq038 PubMedCrossRefGoogle Scholar
  11. Bello-Bedoy R, Núñez-Farfán J (2011) The effect of inbreeding on defence against multiple enemies in Datura stramonium. J Evol Biol 24:518–530. doi:10.1111/j.1420-9101.2010.02185.x PubMedCrossRefGoogle Scholar
  12. Berenbaum MR (1981) Patterns of furanocoumarin distribution and insect herbivory in the Umbelliferae: plant chemistry and community structure. Ecology 62:1254–1266. doi:10.2307/1937290 CrossRefGoogle Scholar
  13. Berenbaum MR, Zangerl AR, Nitao JK (1986) Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution 40:1215–1228CrossRefGoogle Scholar
  14. Bowers MD, Puttick GM (1988) Response of generalist and specialist insects to qualitative allelochemical variation. J Chem Ecol 14:319–334. doi:10.1007/bf01022549 CrossRefGoogle Scholar
  15. Brown JH, Taylor P (2006) Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New YorkGoogle Scholar
  16. Carmona D, Fornoni J (2013) Herbivores can select for mixed defensive strategies in plants. New Phytol 197:576–585PubMedCrossRefGoogle Scholar
  17. Cornell HV, Hawkins BA (2003) Herbivore responses to plant secondary compounds: a test of phytochemical coevolution theory. Am Nat 161:507–522PubMedCrossRefGoogle Scholar
  18. Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond Ser B Biol Sci 205:489–511CrossRefGoogle Scholar
  19. Dobler S, Petschenka G, Pankoke H (2011) Coping with toxic plant compounds–The insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72:1593–1604PubMedCrossRefGoogle Scholar
  20. Duffey S, Isman M (1981) Inhibition of insect larval growth by phenolics in glandular trichomes of tomato leaves. Cell Mol Life Sci 37:574–576. doi:10.1007/bf01990057 CrossRefGoogle Scholar
  21. Ehleringer JR (1984) Ecology and ecophysiology of leaf pubescence in North American desert plants. In: Rodriguez E, Healey PL and Mehta I (eds) Biology and Chemistry of Plant Trichomes. Plenum Press, New York, pp 113–132Google Scholar
  22. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  23. Fornoni J, Valverde PL, Nunez-Farfan J (2004) Population variation in the cost and benefit of tolerance and resistance against herbivory in Datura stramonium. Evolution 58:1696–1704PubMedGoogle Scholar
  24. Garrido E, Andraca-Gómez G, Fornoni J (2012) Local adaptation: simultaneously considering herbivores and their host plants. New Phytol 193:445–453. doi:10.1111/j.1469-8137.2011.03923.x PubMedCrossRefGoogle Scholar
  25. Gonzáles WL, Negritto MA, Suárez LH, Gianoli E (2008) Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecol 33:128–132. doi:10.1016/j.actao.2007.10.004 CrossRefGoogle Scholar
  26. Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711. doi:10.1126/science.1070315 PubMedCrossRefGoogle Scholar
  27. Hanifin CT, Brodie ED Jr, Brodie ED III (2008) Phenotypic mismatches reveal escape from arms-race coevolution. PLoS Biol 6:e60PubMedCrossRefGoogle Scholar
  28. Hartmann T, Dierich B (1998) Chemical diversity and variation of pyrrolizidine alkaloids of the senecionine type: biological need or coincidence? Planta 206:443–451. doi:10.1007/s004250050420 CrossRefGoogle Scholar
  29. Hernández-Cumplido J (2009) Ecología de la interacción tritrófica Datura stramonium-Trichobaris sp.-parasitoides. Masters Thesis, UNAMGoogle Scholar
  30. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281. doi:10.1111/j.1365-2486.2006.01256.x CrossRefGoogle Scholar
  31. Hochberg ME, Van Baalen M (1998) Antagonistic coevolution over productivity gradients. Am Nat 152:620–634PubMedCrossRefGoogle Scholar
  32. Janzen D (1980) When is it coevolution. Evolution 34:611–612CrossRefGoogle Scholar
  33. Kariñho-Betancourt E (2009) Disyuntiva evolutiva entre la resistencia y la tolerancia a los herbívoros en Datura stramonium. Masters Thesis, UNAMGoogle Scholar
  34. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x CrossRefGoogle Scholar
  35. Kursinszki L, Hank H, László I, Szoke É (2005) Simultaneous analysis of hyoscyamine, scopolamine, 6[beta]-hydroxyhyoscyamine and apoatropine in Solanaceous hairy roots by reversed-phase high-performance liquid chromatography. J Chromatogr A 1091:32–39. doi:10.1016/j.chroma.2005.07.016 PubMedCrossRefGoogle Scholar
  36. Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226CrossRefGoogle Scholar
  37. Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176–184. doi:10.1111/j.1469-8137.2007.02090.x PubMedCrossRefGoogle Scholar
  38. Lively CM, Dybdahl MF, Jokela J, Osnas EE, Delph LF (2004) Host sex and local adaptation by parasites in a snail-trematode interaction. Am Nat 164:S6–S18PubMedCrossRefGoogle Scholar
  39. Mauricio R, Rausher MD (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435–1444CrossRefGoogle Scholar
  40. Merilä J, Sheldon BC, Kruuk LEB (2001) Explaining stasis: microevolutionary studies in natural populations. Genetica 112–113:199–222. doi:10.1023/a:1013391806317 PubMedCrossRefGoogle Scholar
  41. Nuismer SL, Thompson JN, Gomulkiewicz R (2000) Coevolutionary clines across selection mosaics. Evolution 54:1102–1115. doi:10.1111/j.0014-3820.2000.tb00546.x PubMedGoogle Scholar
  42. Núñez-Farfán J (1991) Biología vegetal de Datura stramonium L. en el Centro de México: Selección natural de la resistencia a los herbívoros, sistema de cruzamiento y variación genética intra e interpoblacional. PhD dissertation, UNAMGoogle Scholar
  43. Núñez-Farfán J, Dirzo R (1994) Evolutionary ecology of Datura stramonium L. in central Mexico: natural selection for resistance to herbivorous insects. Evolution 48:423–436CrossRefGoogle Scholar
  44. Núñez-Farfán J, Fornoni J, Valverde PL (2007) The evolution of resistance and tolerance to herbivores. Annu Rev Ecol Evol Syst 38:541–566. doi:10.1146/annurev.ecolsys.38.091206.095822 CrossRefGoogle Scholar
  45. Oliver JE (2005) Encyclopedia of world climatology. New YorkGoogle Scholar
  46. Paul VJ, Hay ME (1986) Seaweed susceptibility to herbivory: chemical and morphological correlates. Mar Ecol Prog Ser 33:255–264CrossRefGoogle Scholar
  47. Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411:857–864PubMedCrossRefGoogle Scholar
  48. Rehman S (2010) Temperature and rainfall variation over Dhahran, Saudi Arabia, (1970–2006). Int J Climatol 30:445–449. doi:10.1002/joc.1907 Google Scholar
  49. Rotondi A, Rossi F, Asunis C, Cesaraccio C (2003) Leaf xeromorphic adaptations of some plants of a coastal Mediterranean macchia ecosystem. J Mediter Ecol 4:25–36Google Scholar
  50. Shonle I (1999) Evolutionary ecology of tropane alkaloids. PhD dissertation, University of ChicagoGoogle Scholar
  51. Shonle I, Bergelson J (2000) Evolutionary ecology of the tropane alkaloids of Datura Stramonium L. (Solanaceae). Evolution 54:778–788. doi:10.1111/j.0014-3820.2000.tb00079.x PubMedGoogle Scholar
  52. Siepielski AM, DiBattista JD, Carlson SM (2009) It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 12:1261–1276. doi:10.1111/j.1461-0248.2009.01381.x PubMedCrossRefGoogle Scholar
  53. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Co, New YorkGoogle Scholar
  54. Strauss SY (1991) Direct, indirect, and cumulative effects of three native herbivores on a shared host plant. Ecology 72:543–558CrossRefGoogle Scholar
  55. Thompson JN (1999) The coevolutionary process. University of Chicago Press, IllinoisGoogle Scholar
  56. Thompson JN, Fernandez CC (2006) Temporal dynamics of antagonism and mutualism in a geographically variable plant–insect interaction. Ecology 87:103–112PubMedCrossRefGoogle Scholar
  57. Valverde PL, Fornoni J, Núñez-Farfán J (2001) Defensive role of leaf trichomes in resistance to herbivorous insects in Datura stramonium. J Evol Biol 14:424–432CrossRefGoogle Scholar
  58. Van Dam NM, Hadwich K, Baldwin IT (2000) Induced responses in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta. Oecologia 122:371–379. doi:10.1007/s004420050043 CrossRefGoogle Scholar
  59. Van der Meijden E (1996) Plant defence, an evolutionary dilemma: contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomol Exp Appl 80:307–310. doi:10.1007/bf00194780 CrossRefGoogle Scholar
  60. Weaver S, Dirks V, Warwick S (1985) Variation and climatic adaptation in northern populations of Datura stramonium. Can J Bot 63:1303–1308CrossRefGoogle Scholar
  61. Wilkens RT, Shea GO, Halbreich S, Stamp NE (1996) Resource availability and the trichome defenses of tomato plants. Oecologia 106:181–191. doi:10.1007/bf00328597 CrossRefGoogle Scholar
  62. Wilson AJ et al (2006) Environmental coupling of selection and heritability limits evolution. PLoS Biol 4:e216. doi:10.1371/journal.pbio.0040216 PubMedCrossRefGoogle Scholar
  63. Wink M, Latz-Brüning B (1994) Allelopathic properties of alkaloids and other natural products. In: Allelopathy wrtjkejyk. American Chemical Society, Washington, DC, pp 117–126Google Scholar
  64. Zangerl AR, Berenbaum MR (1993) Plant chemistry, insect adaptations to plant chemistry, and host plant utilization patterns. Ecology 74:47–54CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2013

Authors and Affiliations

  • Guillermo Castillo
    • 1
  • Laura L. Cruz
    • 1
  • Johnattan Hernández-Cumplido
    • 2
  • Ken Oyama
    • 3
  • César Mateo Flores-Ortiz
    • 4
  • Juan Fornoni
    • 1
  • Pedro L. Valverde
    • 5
  • Juan Núñez-Farfán
    • 1
  1. 1.Laboratorio de Genética Ecológica y Evolución, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Laboratory of Evolutionary Entomology, Institute of BiologyUniversity of Neuchâtel (UNINE)NeuchâtelSwitzerland
  3. 3.Centro de Investigaciones en EcosistemasUniversidad Nacional Autónoma de México (UNAM)MoreliaMexico
  4. 4.Laboratorio de Fisiología Vegetal, UBIPROUniversidad Nacional Autónoma de México Facultad de Estudios Superiores IztacalaMexicoMexico
  5. 5.Departamento de BiologíaUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico

Personalised recommendations