Advertisement

Ecological Research

, Volume 27, Issue 6, pp 991–1003 | Cite as

The origin and genetic variability of the Czech sika deer population

  • M. Barančeková
  • J. Krojerová-Prokešová
  • I. V. Voloshina
  • A. I. Myslenkov
  • Y. Kawata
  • T. Oshida
  • J. Lamka
  • P. Koubek
Original Article

Abstract

Sika deer (Cervus nippon), native to Asia, formed two well-established free-living populations in the Czech Republic over the last century and continue to spread. Sika are also maintained in a large number of enclosures; these continue to introduce new individuals from the places of its origin as well as from other European countries. Despite extensive research into the morphology and ethology of the Czech sika deer, conducted over the last three decades, no study using genetic methods has been done. This study aimed to determine the genetic variability and the geographic origin of the Czech sika deer population. Two mitochondrial markers, the cytochrome b and the control region were analyzed in this study. Analysis of the two markers confirmed that the founder individuals of the Czech population originated from both native island (Japanese Islands) and native mainland (Far East Russia) populations. Results showed that the genetic variability of the Czech sika deer population is lower than the variability of the native Japanese population, but higher than that of the sampled part of the native Russian population. Also, the genetic variability was found to be higher within the samples from enclosures.

Keywords

Cervus nippon Cytochrome b gene Control region Introduced species 

Notes

Acknowledgments

We thank H. Pimenova and S. Bondarchuk from the Sikhote-Alin Reserve, the hunters from the Primorsky District and the Terneysky District, M. Asada from the Chiba Biodiversity Centre, and the hunters from the Czech Republic for collection of the samples. We thank our colleague P. Vallo for his laboratory help at the beginning of the study. We also thank both reviewers for their suggestions and comments on previous versions of this paper. This study was financially supported by Grant No. 524/09/1569 from the Czech Science Foundation and by institutional support RVO:68081766.

Supplementary material

11284_2012_992_MOESM1_ESM.doc (374 kb)
Supplementary material 1 (DOC 279 kb)

References

  1. Abernethy K (1994) The establishment of a hybrid zone between red and sika deer (genus Cervus). Mol Ecol 3:551–562. doi: 10.1111/j.1365-294X.1994.tb00086.x PubMedCrossRefGoogle Scholar
  2. Abernethy K (1998) Sika deer in Scotland. Deer commission for Scotland. Chapman & Hall, LondonGoogle Scholar
  3. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi: 10.1109/TAC.1974.1100705.MR0423716 CrossRefGoogle Scholar
  4. Aramilev VV (2009) Sika deer in Russia. In: McCullough DR, Kaji K, Takatsuki S (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York, pp 475–500Google Scholar
  5. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  6. Avise JC (2000) Phylogeography: The history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  7. Babička C, Drábek M, Štika J, Ženožička J (1977) Findings about sika deer breeding (in Czech). Myslivost 11:270–271Google Scholar
  8. Balakrishnan Ch-N, Monfort SL, Gaur A, Singh L, Sorenson MD (2003) Phylogeography and conservation genetics of Eld’s deer (Cerus eldi). Mol Ecol 12:1–10. doi: 10.1046/j.1365-294X.2003.01751.x PubMedCrossRefGoogle Scholar
  9. Bandelt H-J, Forster P, Röhl A (1999) Median-joining network for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  10. Banwell DB (2009) The sika in New Zealand. In: McCullough DR, Kaji K, Takatsuki S (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York, pp 643–656Google Scholar
  11. Bartoš L (2009) Sika deer in Continental Europe. In: McCullough DR, Kaji K, Takatsuki S (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York, pp 573–594Google Scholar
  12. Bartoš L, Vítek M (1993) Cluster analysis of red and sika deer phenotypes. In: Ohtaishi N, Sheng H-I (eds) Deer of China: biology and management. Elsevier, Amsterdam, pp 15–21Google Scholar
  13. Bartoš L, Žirovnický J (1981) Hybridization between red and sika deer. II. Phenotype analysis. Zool Anz 207:20–36Google Scholar
  14. Bartoš L, Žirovnický J (1982) Hybridization between red and sika deer. III. Interspecific behaviour. Zool Anz 208:30–36Google Scholar
  15. Bartoš L, Hyánek J, Žirovnický J (1981) Hybridization between red and sika deer. I. Craniological analysis. Zool Anz 207:260–270Google Scholar
  16. Bartoš L, Herrmann H, Šiler J, Losos S, Mikeš J (1998) Variation of mating systems of introduced sika deer. Rev Ecol Terre Vie 53:337–345Google Scholar
  17. Chadwick AH, Ratcliffe PR, Abernethy K (1996) Sika deer in Scotland: density, population size, habitat use and fertility—some comparisons with red deer. Scott For 50:8–16Google Scholar
  18. Cook CE, Wang Y, Sensabaugh G (1999) A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Mol Phylogenet Evol 12:47–56. doi: 10.1006/mpev.1998.0593 PubMedCrossRefGoogle Scholar
  19. Diaz A, Hughes S, Putman R, Mogg R, Bond JM (2006) A genetic study of sika (Cervus nippon) in the New Forest and in the Purbeck region, southern England. Is there evidence of past hybridization with red deer (Cervus elaphus)? J Zool 270:227–235. doi: 10.1111/j.1469-7998.2006.00130.x CrossRefGoogle Scholar
  20. Doležal V (1960) From Manětínsko (in Czech). Myslivost 4:174Google Scholar
  21. Eick E (1995a) Germany. In: Eick E, König R, Willett J (eds) Sika, Cervus nippon Temminck, 1838, vol 1, 2nd edn. International Sika Society, Möhnesee, Germany, pp 2.2-D/1–13Google Scholar
  22. Eick E (1995b) A history of naturalisation. In: Eick E, König R, Willett J (eds) Sika, Cervus nippon Temminck, 1838, vol 1, 2nd edn. International Sika Society, Möhnesee, Germany pp 9.1–9.14Google Scholar
  23. Feldhamer GA, Demarais S (2009) Free-ranging and confined sika deer in North America: current status, biology, and management. In: McCullough DR, Kaji K, Takatsuki S (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York, pp 615–641Google Scholar
  24. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. doi: 10.1007/BF01734359 PubMedCrossRefGoogle Scholar
  25. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  26. Gehle T, Herzog S (1998) Is there evidence for hybridisation between red deer and sika deer in Germany? In: Zomborszky Z (ed) 4th International Deer Biology Congress, June 30–July 4, 1998, Final program—Abstracts. Pannon Agricultural University, Faculty of Animal Science, Kaposvar, Hungary, pp 121–123Google Scholar
  27. Goodman SJ, Barton NH, Swanson G, Abernethy K, Pemberton JM (1999) Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics 152:355–371PubMedGoogle Scholar
  28. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi: 10.1080/10635150390235520 PubMedCrossRefGoogle Scholar
  29. Guo Y-S, Zheng H-Z (2000) On the geological distribution, taxonomic status of species and evolutionary history of sika deer in China (in Chinese with English summary). Acta Theriol Sinica 20:168–179Google Scholar
  30. Harrington R (1973) Hybridization among deer and its implication for conservation. Irish For J 30:64–78Google Scholar
  31. Harrington R (1982) The hybridization of red deer (Cervus elaphus L. 1758) and Japanese sika deer (C. nippon Temminck 1838). In: O’Gorman F, Rochford J (eds) Transactions XIVth International Congress of Game Biologists. Irish Wildlife Publications for the Organising Committee of the XIVth Congress, Dublin, Ireland, pp 559–571Google Scholar
  32. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174. doi: 10.1007/BF02101694 PubMedCrossRefGoogle Scholar
  33. Heptner VG, Nasimovitch AA, Banikov AG (1961) Mammals of the Soviet Union. Part One. Even-toed and odd-toed ungulates (in Russian). State University Press, MoscowGoogle Scholar
  34. Heroldová M (1990) The diet of sika deer (Cervus nippon) outside the growing-season, with a snow cover. Folia Zool 39:197–206Google Scholar
  35. Herzog S (1987) Mechanisms of karyotype evolution in Cervus nippon Temminck. Caryologia 40:347–353. doi: 10.1016/0303-2647(90)90008-O Google Scholar
  36. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of cytochrome b in mammals. J Mol Evol 32:128–144. doi: 10.1007/BF02515385 PubMedCrossRefGoogle Scholar
  37. Kawamura Y (1991) Quaternary mammalian faunas in the Japanese islands (in Japanese with English abstract). Quat Res 30:213–220CrossRefGoogle Scholar
  38. Kawamura Y (2009) Fossil record of Sika deer in Japan. In: McCullough DR, Kaji K, Takatsuki S (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York, pp 11–26Google Scholar
  39. Kelly DL (2002) The re-generation of Quercus petraea (sessile oak) in southwest Ireland: a 25-year experimental study. Forest Ecol Manag 166:207–226. doi: 10.1016/S0378-1127(01)00670-3 CrossRefGoogle Scholar
  40. Kocher TD, Thomas WK, Meyer A (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. PNAS 86:6196–6200PubMedCrossRefGoogle Scholar
  41. Kokeš O (1970) Asian deer in the Czechoslovakia (in Czech). Ochrana Fauny 4:158–161Google Scholar
  42. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 PubMedCrossRefGoogle Scholar
  43. Lowe R (1994) Deer management: developing the requirements for the establishment of diverse coniferous and broadleaf forests. Unpublished Report, Coilte, Bray, Co. WicklowGoogle Scholar
  44. Lowe VPW, Gardiner AS (1975) Hybridisation between red deer and sika deer, with reference to stocks in north-west England. J Zool 177:553–566CrossRefGoogle Scholar
  45. Ludt ChJ, Schroeder W, Rottmann O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 31:1064–1083. doi: 10.1016/j.ympev.2003.10.003 PubMedCrossRefGoogle Scholar
  46. McCullough DR (2009a) Sika deer in Korea and Vietnam. In: McCullough DR, Kaji K, Takatsuki S (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York, pp 541–548Google Scholar
  47. McCullough DR (2009b) Sika deer in Taiwan. In: McCullough DR, Kaji K, Takatsuki S (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York, pp 549–560Google Scholar
  48. McCullough DR, Kaji K, Takatsuki S (eds) (2009) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New YorkGoogle Scholar
  49. McDevitt AD, Edwards CJ, O’Toole P, O’Sullivan P, O’Reilly C, Carden RF (2009) Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mamm Biol 74:263–273. doi: 10.1016/j.mambio.2009.03.015 CrossRefGoogle Scholar
  50. Nagata J (2009) Two genetically distinct lineages of the Japanese Sika deer based on mitochondrial control regions. In: McCullough et al. (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York, pp 27–42Google Scholar
  51. Nagata J, Masuda R, Yoshida MC (1995) Nucleotide sequences of the cytochrome b and 12S rRNA in the Japanese sika deer Cervus nippon. J Mamm Soc Jpn 20:1–8Google Scholar
  52. Nagata J, Masuda R, Tamate HB, Hamasaki S, Ochiai K, Asada M, Tatsuzawa S, Suda K, Tado H, Yoshida MC (1999) Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: comparison of mitochondrial D-loop region sequences. Mol Phylogenet Evol 13:511–519. doi: 10.1006/mpev.1999.0668 PubMedCrossRefGoogle Scholar
  53. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  54. Ohtaishi N (1986) Preliminary memorandum of classification, distribution and geographic variation on sika deer (in Japanese). Mammal Sci 53:13–17Google Scholar
  55. Pemberton J, Swanson G, Barton N, Livingstone S, Senn H (2006) Hybridisation between red and sika deer in Scotland. Deer 13:22–26Google Scholar
  56. Pérez-Espona S, Pemberton JM, Putman R (2009) Red and sika deer in the British Isles, current management issues and management policy. Mammal Biol 74:247–262. doi: 10.1016/j.mambio.2009.01.003 CrossRefGoogle Scholar
  57. Pitra Ch, Rehbein S, Lutz W (2005) Tracing the genetic roots of the sika deer Cervus nippon naturalized in Germany and Austria. Eur J Wildl Res 51:237–241. doi: 10.1007/s10344-005-0107-y CrossRefGoogle Scholar
  58. Polziehn R, Strobeck C (2002) A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Mol Phylogenet Evol 22:342–356. doi: 10.1006/mpev.2001.1065 PubMedCrossRefGoogle Scholar
  59. Powerscourt V (1884) On the acclimatization of the Japanese deer at Powerscourt. P Zool Soc Lond: 207–209Google Scholar
  60. Putman RJ (2000) Sika deer. Joint publication by The Mammal Society, London, and the British Deer Society, HampshireGoogle Scholar
  61. Putman RJ, Moore NP (1998) Impact of deer in lowland Britain on agriculture, forestry and conservation habitats. Mamm Rev 28:141–163. doi: 10.1046/j.1365-2907.1998.00031.x CrossRefGoogle Scholar
  62. Ratcliffe PR (1987) Distribution and current status of sika deer (Cervus nippon) in Great Britain. Mamm Rev 17:37–58CrossRefGoogle Scholar
  63. Ronquist FR, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  64. Senn HV, Pemberton JM (2009) Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographic area. Mol Ecol 18:862–876. doi: 10.1111/j.1365-294X.2008.04051.x PubMedCrossRefGoogle Scholar
  65. Sheng H-L, Ohtaishi N (1993) The status of deer in China. In: Ohtaishi N, Sheng H-L (eds) Deer of China: biology and management. Elsevier, Amsterdam, pp 1–11Google Scholar
  66. Swanson GM, Putman R (2009) Sika deer in the British Isles. In: McCullough DR, Kaji K, Takatsuki S (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York, pp 595–614Google Scholar
  67. Swofford DL (2003) PAUP*. Phylogenetic Analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  68. Tamate HB, Tsuchiya T (1992) Molecular phylogeny of Japanese sika deer (Cervus nippon). Zool Sci 12:1302. doi: 10.1006/mpev.1998.0593 Google Scholar
  69. Tamate HB, Tsuchiya T (1995) Mitochondrial DNA polymorphism in subspecies of the Japanese sika deer, Cervus nippon. J Hered 86:211–215PubMedGoogle Scholar
  70. Tamate HB, Tatsuzawa S, Suda K, Izawa M, Doi T, Sunagawa K, Miyahira F, Tado H (1998) Mitochondrial DNA variations in local populations of the Japanese sika deer, Cervus nippon. J Mammal 78:1396–1403CrossRefGoogle Scholar
  71. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci (Am Math Soc) 17:57–86Google Scholar
  72. Thévenon S, Thuy LT, Ly LV, Maudet F, Bonnet A, Jarne P, Maillard J-C (2004) Microsatellite analysis of genetic diversity of the Vietnamese sika deer (Cervus nippon pseudaxis). J Hered 95:11–18. doi: 10.1093/jhered/esh001 PubMedCrossRefGoogle Scholar
  73. Vach M et al. (2010) Development of game management and hunting in the Czech Republic. Publisher Silvestris PB tisk, Příbram (In Czech)Google Scholar
  74. Vavruněk J, Wolf R (1977) Breeding of red deer in West-Bohemian region. Textbook Sci For Inst VŠZ Prague 20:97–115 (in Czech)Google Scholar
  75. Voloshina IV, Myslenkov AI (2009) Sika deer distribution changes at the north extent of their range in the Sikhote-Alin Mountains of the Russian Far East. In: McCullough DR, Kaji K, Takatsuki S (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York, pp 501–520Google Scholar
  76. Whitehead GK (1993) The Encyclopaedia of deer. Swan Hill Press, ShrewsburyGoogle Scholar
  77. Wilson RL (2000) An investigation into the phylogeography of sika deer (Cervus nippon) using microsatellite markers. M.Sc. thesis, University of Edinburg, Scotland, UKGoogle Scholar
  78. Wo C, Smith KG (1999) History and current status of mammals of the Korean Peninsula. Mammal Rev 29:3–33. doi: 10.1046/j.1365-2907.1999.00034.x CrossRefGoogle Scholar
  79. Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol Biol Evol 14:717–724PubMedCrossRefGoogle Scholar
  80. Yuasa T, Nagata J, Hamasaki S, Tsuruga H, Furubayashi K (2007) The impact of habitat fragmentation on genetic structure of the Japanese sika deer (Cervus nippon) in southern Kantoh, revealed by mitochondrial DNA sequences. Ecol Res 22:97–106. doi: 10.1007/s11284-006-0190-x CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2012

Authors and Affiliations

  • M. Barančeková
    • 1
  • J. Krojerová-Prokešová
    • 1
  • I. V. Voloshina
    • 2
  • A. I. Myslenkov
    • 2
  • Y. Kawata
    • 3
  • T. Oshida
    • 3
  • J. Lamka
    • 4
  • P. Koubek
    • 1
    • 5
  1. 1.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Lazovsky State Nature ReserveLazo, Primorsky KraiRussia
  3. 3.Obihiro University of Agriculture and Veterinary MedicineObihiroJapan
  4. 4.Faculty of PharmacyCharles University PragueHradec KrálovéCzech Republic
  5. 5.Department of Forest Protection and Game Management, Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePrague 6, SuchdolCzech Republic

Personalised recommendations