Ecological Research

, 26:477 | Cite as

‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example

  • Nai-hao Ye
  • Xiao-wen Zhang
  • Yu-ze Mao
  • Cheng-wei Liang
  • Dong Xu
  • Jian Zou
  • Zhi-meng Zhuang
  • Qing-yin Wang
Review

Abstract

A broad spectrum of events that come under the category of green tide are recognized world-wide as a response to elevated levels of seawater nutrients in coastal areas. Green tides involve a wide diversity of sites, macroalgal species, consequences, and possible causes. Here we review the effect of natural and man-induced environmental fluctuations on the frequency and apparent spread of green tides. This article highlights the need for interdisciplinary research aimed at shedding light on the basic mechanisms governing the occurrence and succession of green algae in coastal seas. This will result in more effective management and mitigation of the effects of green tides, thus safeguarding the intrinsic and commercial value of coastal marine ecosystems.

Keywords

Green tide Diversity Environmental fluctuation 

References

  1. Anderson RJ, Monteiro PMS, Levitt GJ (1996) The effect of localised eutrophication on competition between Ulva lactuca (Ulvaceae, Chlorophyta) and a commercial resource of Gracilaria verrucosa (Gracilariaceae, Rhodophyta). Hydrobiologia 326–327:291–296CrossRefGoogle Scholar
  2. Auby I, Manaud F, Maurer D, Trut G (1994) Etude de la prolifération des algues vertes dans le Bassin d’Arcachon. Rapport SIBAGoogle Scholar
  3. Blomster J, Baeck S, Fewer DP, Kiirikki M, Lehvo A, Maggs CA, Stanhope MJ (2002) Novel morphology in Enteromorpha (Ulvophyceae) forming green tides. Am J Bot 89:1756–1763CrossRefGoogle Scholar
  4. Bolam SG, Fernandez TF, Read P, Raffaelli D (2000) Effects of macroalgal mats on intertidal sandflats: an experimental study. J Exp Mar Biol Ecol 249(1):123–137PubMedCrossRefGoogle Scholar
  5. Bonsdorff E, Blomqvist EM, Mattila J, Norkko A (1997) Coastal eutrophication: causes, consequences and perspectives in the archipelago areas of the Northern Baltic Sea. Estuar Coast Shelf Sci 44:63–72CrossRefGoogle Scholar
  6. Briand X, Morand P (1997) Anaerobic digestion of Ulva sp.1. Relationship between Ulva composition and methanisation. J Appl Phycol 9:511–524Google Scholar
  7. Bushaw-Newton KL, Sellner KG (1999) Harmful algal blooms. In: NOAA’s State of the Coast Report. National Oceanic and Atmospheric Administration, Silver Spring, MDGoogle Scholar
  8. Charlier RH, Mor P, Finkl CW, Thys A (2007) Green tides on the Brittany coasts. Environ Res Eng Manage 3:52–59Google Scholar
  9. den Hartog C (1994) Suffocation of a littoral Zostera bed by Enteromorpha radiata. Aquat Bot 47:21–28CrossRefGoogle Scholar
  10. Ding L, Fei X, Lu Q, Deng Y, Lian S (2009) The possibility analysis of habitats, origin and reappearance of bloom green alga (Enteromorpha prolifera) on inshore of western Yellow Sea. Chin J Oceanol Limnol 27:421–424CrossRefGoogle Scholar
  11. Fletcher RL (1996a) The British Isles. In: Schramm W, Nienhuis PH (eds) Marine benthic vegetation: recent changes, the effects of eutrophication. Springer, Berlin, pp 150–223Google Scholar
  12. Fletcher RL (1996b) The occurrence of ‘green tides’ a review. In: Schramm W, Nienhuis PH (eds) Marine benthic vegetation: recent changes and the effects of eutrophication. Springer, Berlin, pp 7–43Google Scholar
  13. Fong P, Zedler JB, Donohoe RM (1993) Nitrogen vs phosphorus limitation of algal biomass in shallow coastal lagoons. Limnol Oceanogr 38:906–923CrossRefGoogle Scholar
  14. Frankenstein G (2000) Blooms of ulvoids in puget sound: Puget Sound water quality action team. Office of the Governor, WashingtonGoogle Scholar
  15. Fu G, Yao J, Liu F, Liu J, Wang X, Fu W, Li D, Zhou M, Sun S, Duan D (2008) Effect of temperature and irradiance on the growth and reproduction of Enteromorpha prolifera J Ag (Chlorophycophyta, Chlorophyceae). Chin J Ocean Limnol 4:357–362CrossRefGoogle Scholar
  16. Gamenick I, Jahn A, Vopel K, Giere O (1996) Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Seashore: colonisation studies and tolerance studies. Mar Ecol Prog Ser 144:75–85CrossRefGoogle Scholar
  17. Gao S, Chen X, Yi Q, Wang G, Pan G, Lin A, Peng G (2010) A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PloS ONE 5(1):e8571. doi:10.1371/journal.pone.0008571
  18. Guiry MD, Guiry GM (2007) Algae Base version 4.2. Worldwide electronic publication: National University of Ireland, Galway. Available at: http://www.algaebase.org (Accessed 2 May 2007)
  19. Harder T, Dobretsov S, Qian PY (2004) Waterbourne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulate. Mar Ecol Prog Ser 274:133–141CrossRefGoogle Scholar
  20. Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294CrossRefGoogle Scholar
  21. Hull S (1988) The growth of macroalgal mats on the Ythan estuary, with respect to their effects on invertebrate abundance. PhD Thesis, Aberdeen UniversityGoogle Scholar
  22. Jeffrey DW, Madden B, Rafferty B, Dwyer R, Wilson J, Allott N (1992) Dublin Bay-water quality management plan. Technical Report 7, Algal growths and foreshore quality. Environmental Research Unit, DublinGoogle Scholar
  23. Jiang P, Wang JF, Cui YL, Li YX, Lin HZ, Qin S (2008) Molecular phylogenetic analysis of attached Ulvaceae species and free-floating Enteromorpha from Qingdao coasts in 2007. Chin J Oceanol Limnol 26:276–279CrossRefGoogle Scholar
  24. Lappalainen A, Pönni J (2000) Eutrophication and recreational fishing on the Finnish coast of the Gulf of Finland: a mail survey. Fish Manag Ecol 7:323–335Google Scholar
  25. Lavery PS, Lukatelich RJ, McComb AJ (1991) Changes in biomass and species composition of macroalgae in a eutrophic estuary. Estuar Coast Shelf Sci 33:122CrossRefGoogle Scholar
  26. Leliaert F, Malta EJ, Engelen AH, Mineur F, De Clerck O (2008) Qingdao algal bloom culprit identified. Mar Pollut Bull 56:15–16Google Scholar
  27. Leliaert F, Zhang X, Ye N, Malta E, Engelen AH, Mineur F, Verbruggen H, De Clerck O (2009) Identity of the Qingdao algal bloom. Phycol Res 57:147–151CrossRefGoogle Scholar
  28. Li D, Zhao J, Chen L, Zhang X, Wang Q, Wang H, Ye N (2010) Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China. Chem Eng Res Des 88:647–652CrossRefGoogle Scholar
  29. Liang Z, Lin X, Ma M, Zhang J, Yan X, Liu T (2008) A preliminary study of the Enteromorpha prolifera drift gathering causing the green tide phenomenon (in Chinese with English abstract). Period Ocean Univ China 38:601–604Google Scholar
  30. Liang CW, Zhang XW, Su F, Ye NH (2010) Analysis of diversity of Ulva in Qingdao after the largest macroalgal bloom (in Chinese with English abstract). Mar Sci Bull 29:540–545Google Scholar
  31. Lin A, Shen S, Wang J, Yan B (2008) Reproduction diversity of Enteromorpha prolifera. J Integr Plant Biol 50:622–629PubMedCrossRefGoogle Scholar
  32. Liu DY, Keesing JK, Xing QG, Shi P (2009) Worlds largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull 58(6):888–895PubMedCrossRefGoogle Scholar
  33. Liu DY, Keesing JK, Dong Z, Zhen Y, Di B, Shi Y, Fearns P, Shi P (2010) Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar Pollut Bull 60(9):1423–1432PubMedCrossRefGoogle Scholar
  34. Lotze HK, Schramm W, Schories D, Worm B (1999) Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp. Oecologia 119:46–54CrossRefGoogle Scholar
  35. Lyngby JE, Mortensen SM (1994) Assessment of nutrient availability and limitation using macroalgae. J Aquat Ecosyst Health 3:27–34CrossRefGoogle Scholar
  36. Ménesguen A, Piriou JY (1995) Nitrogen loadings and macroalgal (Ulva sp) massaccumulation in Brittany (France). Ophelia 42:227–237Google Scholar
  37. Montgomery HAC, Soulsby PG, Hart IC, Wright SL (1985) Investigation of a eutrophic tidal nbasin. Part 2. Nutrients and environmental aspects. Mar Environ Res 15:285–302CrossRefGoogle Scholar
  38. Morand P, Briand X (1996) Excessive growth of macroalgae: a symptom of environmental disturbance. Bot Mar 39:491–516CrossRefGoogle Scholar
  39. Morand P, Briand X (1999) Anaerobic digestion of Ulva sp. 2. Study of Ulva degradation and methanisation of liquefaction juices. J Appl Phycol 11:165–177CrossRefGoogle Scholar
  40. Morand P, Merceron M (2004) Coastal eutrophication and excessive growth of macroalgae. In: Pandalai SG (ed) Recent research developments in environmental biology, vol 1(2). Research Signpost, Trivandrum, Kerala, India, pp 395–449Google Scholar
  41. Morand P, Merceron M (2005) Macroalgal population and sustainability. J Coast Res 21:1009–1020CrossRefGoogle Scholar
  42. Morand P, Carpentier B, Charlier RH, Mazé J, Orlandini M, Plunkett BA, de Waart J (1991) Bioconversion of seaweeds. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 95–148Google Scholar
  43. Morand P, Briand X, Charlier RH (2006) Anaerobic digestion of Ulva sp. 3. Liquefaction juices extraction by pressing and technico-economic budget. J Appl Phycol 18:741–755CrossRefGoogle Scholar
  44. Munda IM (1993) Impact of pollution on benthic marine algae in the Northern Adriatic. Int J Environ Stud 43:185–199CrossRefGoogle Scholar
  45. Nelson TA, Nelson AV, Tjoelker M (2003) Seasonal patterns in ulvoid algal biomass, productivity, and key environmental factors in the Northeast Pacific. Bot Mar 46:263–327CrossRefGoogle Scholar
  46. Norkko J, Bonsdorff E, Norkko A (2000) Drifting algal mats as an alternative habitat for benthic invertebrates: species specific responses to a transient resource. J Exp Mar Biol Ecol 248:79–104PubMedCrossRefGoogle Scholar
  47. Pang SJ, Liu F, Shan TF, Xu N, Zhang ZH, Gao SQ, Chopin T, Sun S (2010) Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Mar Environ Res 69:207–215PubMedCrossRefGoogle Scholar
  48. Pedersen MF (1995) Nitrogen limitation of photosynthesis and growth: comparison across aquatic plant communities in a Danish estuary (Roskilde Fjord). Ophelia 41:261–272Google Scholar
  49. Pedersen MF, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161:155–163CrossRefGoogle Scholar
  50. Pihl L, Magnusson G, Isaksson I, Wallentinus I (1996) Distribution and growth dynamics of ephemeral macroalgae in shallow bays on the Swedish West coast. J Sea Res 35:169–180CrossRefGoogle Scholar
  51. Piriou JY, Coïc D, Merceron M (1999) Abattement de l’azote par le marais côtier de Kervigen et potentiel breton. In: Merceron M (ed) Pollutions diffuses: du bassin versant au littoral. Saint-Brieuc, Ploufragan, 23–24 septembre 1999. Plouzané, France: IFREMER. Actes de colloques 24:275–287Google Scholar
  52. Pitkänen H, Kondratyev S, Lääne A, Gran V, Kauppila P, Loigu E, Markovets I, Pachel K, Rumyantsev V (1997) Pollution load on the Gulf of Finland from Estonia, Finland and Russia in 1985–1995. Summary report of the working group. In: Proceedings of the Final Seminar of the Gulf of Finland Year 1996, Environmental Institute, Helsinki, Finland, pp 9–18Google Scholar
  53. Rafaelli DG, Limia J, Hull S, Pont S (1991) Interactions between the amphipod Corophium volutator and macroalgal mats on estuarine mudflats. JMBA (UK) 71:899–908Google Scholar
  54. Raffaelli D (2000) Interactions between macroalgal mats and invertebrates on the Ythan estuary. Helgoland Mar Res 54:71–77CrossRefGoogle Scholar
  55. Raffaelli D, Hull S, Milne H (1989) Long-term changes in nutrients, weedmats and shore birds in an estuarine system. Cah Biol Mar 30:259–270Google Scholar
  56. Raffaelli DG, Raven JA, Poole LJ (1998) Ecological impact of green macroalgal blooms. Oceanogr Mar Biol Annu Rev 36:97–125Google Scholar
  57. Runca E, Bernstein A, Postma L, Di Silvio G (1996) Control of macroalgae blooms in the Lagoon of Venice. Ocean Coast Manag 30:235–257CrossRefGoogle Scholar
  58. Scanlan CM, Foden J, Wells E, Best MA (2007) The monitoring of opportunistic macroalgal blooms for the water framework directive. Mar Poll Bull 55:162–171CrossRefGoogle Scholar
  59. Schramm W (1991) Seaweeds for waste water treatment and recycling of nutrients. Bioconversion of seaweeds. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 149–168Google Scholar
  60. Schramm W, Nienhuis PH (1996) Introduction. In: Nienhuis PH, Schramm W (eds) Marine benthic vegetation recent changes and the effects of eutrophication. Springer, BerlinGoogle Scholar
  61. Sfriso A, Pavoni B, Marcomini A, Orio AA (1988) Annual variations of nutrients in the Lagoon of Venice. Mar Pollut Bull 19:54–60CrossRefGoogle Scholar
  62. Sfriso A, Marcomini A, Pavoni B, Orio AA (1992) Macroalgae, nutrient cycles, and pollutants in the Lagoon of Venice. Estuaries 15:517–528CrossRefGoogle Scholar
  63. Sun S, Wang F, Li C, Qin S, Zhou M, Ding L, Pang S, Duan D, Wang G, Yin B, Yu R, Jiang P, Liu Z, Zhang G, Fei X, Zhou M (2008) Emerging challenges: massive green algae blooms in the Yellow Sea. Available from Nature Precedings http://hdl.handle.net/10101/npre.2008.2266.1
  64. Taylor R, Fletcher RL, Raven JA (2001) Preliminary studies on the growth of selected ‘green tide’ algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot Mar 44:327–333CrossRefGoogle Scholar
  65. Thybo-Christensen M, Rasmussen MB, Blackbum TH (1993) Nutrient fluxes and growth of Cladophora sericea in a shallow Danish bay. Mar Ecol Prog Ser 100:273–281CrossRefGoogle Scholar
  66. Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallowe stuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118CrossRefGoogle Scholar
  67. Viaroli P, Naldi M, Bondavalli C, Bencivelli S (1996) Growth of the seaweed Ulva rigida C. Agardh in relation to biomass densities, internal nutrient pools and external nutrient supply in the Sacca di Goro lagoon (Northern Italy). Hydrobiologia 329:93–103CrossRefGoogle Scholar
  68. Villares R, Puente X, Carballeira A (1999) Nitrogen and phosphorus in Ulva sp in the Galician Rias Bajas (northwest Spain): seasonal fluctuations and influence on growth. Bol Inst Esp Oceanogr 15:337–341Google Scholar
  69. Virnstein RW, Carbonara PA (1985) Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian River lagoon, Florida. Aquat Bot 23:67–82CrossRefGoogle Scholar
  70. Wang J, Jiang P, Cui Y, Li N, Wang M, Lin H, He P, Qin S (2010) Molecular analysis of green-tide-forming macroalgae in the Yellow Sea. Aquat Bot 93:25–31CrossRefGoogle Scholar
  71. Wilce RT, Schneider CW, Quinlan AV, Bosch KV (1982) The life history and morphology of free-living Pilayella littoralis (L.) Kjellm. (Ectocarpaceae, Ectocarpales) in Nahant Bay, Massachusetts. Phycologia 21:336–354CrossRefGoogle Scholar
  72. Worm B, Heike K, Sommer U (2001) Algal propagules banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia 28:281–293CrossRefGoogle Scholar
  73. Ye NH, Zhang XW, Mao YZ, Zhuang ZM, Wang QY (2008a) Life history of Enteromorpha prolifera under laboratory conditions (in Chinese with English abstract). J Fish Sci China 15:853–859Google Scholar
  74. Ye NH, Zhuang ZM, Jin XS, Wang QY, Zhang XW, Li DM, Wang HX, Mao YZ, Jiang ZJ, Li B, Xue ZX (2008b) China is on the track tackling Enteromorpha spp. forming green tide. Available from Nature Precedings http://hdl.handle.net/10101/npre.2008.2352.1
  75. Ye NH, Li DM, Chen L,Zhang XW, Xu D (2010) Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa. PLoS ONE 5(9):e12641. doi:10.1371/journal.pone.001264
  76. Zhang X, Mao Y, Zhuang Z, Liu S, Wang Q, Ye N (2008) Morphological characteristics and molecular phylogenetic analysis of green tide Enteromorpha sp. occurred in the Yellow Sea (in Chinese with English abstract). J Fish Sci China 15:822–829Google Scholar
  77. Zhang X, Wang H, Mao Y, Liang C, Zhuang Z, Wang Q, Ye N (2010) Somatic cells serve as a potential propagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China. J Appl Phycol 22:173–180CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2011

Authors and Affiliations

  • Nai-hao Ye
    • 1
  • Xiao-wen Zhang
    • 1
  • Yu-ze Mao
    • 1
  • Cheng-wei Liang
    • 2
  • Dong Xu
    • 1
  • Jian Zou
    • 1
  • Zhi-meng Zhuang
    • 1
  • Qing-yin Wang
    • 1
  1. 1.Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  2. 2.Qingdao University of Science and TechnologyQingdaoChina

Personalised recommendations