Ecological Research

, Volume 25, Issue 3, pp 543–552

Dispersal of four fritillary butterflies within identical landscape

  • Zdenek Fric
  • Vladimir Hula
  • Martina Klimova
  • Kamil Zimmermann
  • Martin Konvicka
Original Article

Abstract

Both species-specific traits and landscape configuration, such as area and connectivity of habitat patches plus the character of uninhabitable matrix, affect animal movements in fragmented landscapes. Difficulties with disentangling species-specific and landscape effects have obscured comparisons among species, hindering the understanding of dispersal in metapopulations. To circumvent this complication, we performed a mark–recapture study of four related nymphalid butterflies within identical landscape and in single season. The studied species were three Melitaeinae checkerspots (Euphydryas aurinia, Melitaea athalia, Melitaea diamina) and one Argynnini fritillary (Brenthis ino). Applying the Virtual Migration model revealed that (1) except for mortality within habitat, model parameters differed from those found for the studied species elsewhere; (2) the three Melitaeinae species were more akin in movement parameters than the Argynnini representative (i.e., B. ino); (3) within Melitaeinae, differences between sexes were more prominent than differences among species; (4) Melitaeinae males left natal patches more readily than females, while the opposite applied to B. ino; (5) males of M. diamina and both sexes of B. ino exhibited highest values of dispersal mortality; (6) except for females of M. diamina and both sexes of B. ino, immigration and emigration scaled with area in females but not in males. Finding (1) demonstrates that geometry of habitat network affects mobility considerably and that transferring dispersal parameters across systems is unwarranted. Still, (2–6) demonstrate that within identical networks, related species follow similar dispersal patterns, suggesting that conservation scenarios suitable for a well-studied model species would suite related species as well.

Keywords

Conservation Euphydryas aurinia Melitaea athalia Melitaea diamina Brenthis ino Metapopulation Mobility Population ecology Survival 

References

  1. Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22:1117–1129CrossRefGoogle Scholar
  2. Baguette M, Vansteenwegen C, Convi I, Neve G (1998) Sex-biased density-dependent migration in a metapopulation of the butterfly Proclossiana eunomia. Acta Oecol 19:17–24CrossRefGoogle Scholar
  3. Baguette M, Petit S, Quéva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108CrossRefGoogle Scholar
  4. Benes J, Konvicka M, Dvorak J, Fric Z, Havelda Z, Pavlicko A, Vrabec V, Weidenhoffer Z (eds) (2002) Butterflies of the Czech Republic: distribution and Conservation I, II. SOM, PragueGoogle Scholar
  5. Brunzel S (2002) Experimental density-related emigration in the cranberry fritillary Boloria aquilonaris. J Insect Behav 15:739–750CrossRefGoogle Scholar
  6. Cizek O, Konvicka M (2005) What is a patch in a dynamic metapopulation? Mobility of an endangered woodland butterfly, Euphydryas maturna. Ecography 28:791–800CrossRefGoogle Scholar
  7. Cooch E, White G (2009) Using MARK—a gentle introduction, 8th edn. Electronic book. http://www.phidot.org/software/mark/docs/book/
  8. Dennis RLH, Shreeve TG, van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426CrossRefGoogle Scholar
  9. Fred MS, Brommer JE (2009) Resources influence dispersal and population structure in an endangered butterfly. Insect Conserv Divers 2:176–182CrossRefGoogle Scholar
  10. Fric Z, Konvicka M (2007) Dispersal kernels of butterflies: power-law functions are invariant to marking frequency. Basic Appl Ecol 8:377–386CrossRefGoogle Scholar
  11. Grill A, Schtickzelle N, Cleary DFR, Neve G, Menken SBJ (2006) Ecological differentiation between the Sardinian endemic Maniola nurag and the pan-European M. jurtina. Biol J Linn Soc 89:561–574CrossRefGoogle Scholar
  12. Grosbois V, Tavecchiaa G (2003) Modeling dispersal with capture–recapture data: disentangling decisions of leaving and settlement. Ecology 84:1225–1236CrossRefGoogle Scholar
  13. Gutierrez D, Leon-Cortes JL, Menendez R, Wilson RJ, Cowley MJR, Thomas CD (2001) Metapopulations of four lepidopteran herbivores on a single host plant, Lotus corniculatus. Ecology 82:1371–1386Google Scholar
  14. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  15. Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75:747–762CrossRefGoogle Scholar
  16. Hanski I, Alho J, Moilanen A (2000) Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81:239–251CrossRefGoogle Scholar
  17. Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735CrossRefGoogle Scholar
  18. Hula V, Konvicka M, Pavlicko A, Fric Z (2004) Marsh Fritillary (Euphydryas aurinia) in the Czech Republic: monitoring, metapopulation structure, and conservation of an endangered butterfly. Entomol Fenn 15:231–241Google Scholar
  19. Klimova M (2005) Population structure and survival of Melitaea diamina in fragmented landscape. Thesis. Faculty of Biological Sciences, University of South Bohemia, Ceske Budejovice. [In Czech]Google Scholar
  20. Konvicka M, Hula V, Fric Z (2003) Habitat of pre-hibernating larvae of the endangered butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae): what can be learned from vegetation composition and architecture? Eur J Entomol 100:313–322Google Scholar
  21. Konvicka M, Novak J, Benes J, Fric Z, Bradley J, Keil P, Hrcek J, Chobot K, Marhoul P (2008) The last population of the Woodland Brown butterfly (Lopinga achine) in the Czech Republic: habitat use, demography and site management. J Insect Conserv 12:549–560CrossRefGoogle Scholar
  22. Kuras T, Benes J, Fric Z, Konvicka M (2003) Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica. Popul Ecol 45:115–123CrossRefGoogle Scholar
  23. Lebreton J, Burnham KP, Clobert J, Anderson DR (1992) Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118CrossRefGoogle Scholar
  24. Matter SF, Ezzeddine M, Duermit E, Mashburn J, Hamilton R, Lucas T, Roland J (2009) Interactions between habitat quality and connectivity affect immigration but not abundance or population growth of the butterfly, Parnassius smintheus. Oikos 118:1461–1470CrossRefGoogle Scholar
  25. Mennechez G, Petit S, Schtickzelle N, Baguette M (2004) Modelling mortality and dispersal: consequences of parameter generalisation on metapopulation modelling. Oikos 106:243–252CrossRefGoogle Scholar
  26. Murphy DD, Menninger MS, Ehrlich PR, Wilcox BA (1986) Local population dynamics of adult butterflies and the conservation status of two closely related species. Biol Conserv 37:201–223CrossRefGoogle Scholar
  27. Ovaskainen O (2004) Habitat-specific movement parameters estimated using mark–recapture data and a diffusion model. Ecology 85:242–257CrossRefGoogle Scholar
  28. Petit S, Moilanen A, Hanski I, Baguette M (2001) Metapopulation dynamics of the bog fritillary butterfly: movements between habitat patches. Oikos 92:491–500CrossRefGoogle Scholar
  29. Rabasa SG, Gutiérrez D, Escudero A (2007) Metapopulation structure and habitat quality in modelling dispersal in the butterfly Iolana iolas. Oikos 116:793–806CrossRefGoogle Scholar
  30. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99CrossRefPubMedGoogle Scholar
  31. Schneider C, Dover J, Fry GLA (2003) Movement of two grassland butterflies in the same habitat network: the role of adult resources and size of the study area. Ecol Entomol 28:219–227CrossRefGoogle Scholar
  32. Schtickzelle N, Le Boulengé E, Baguette M (2002) Metapopulation dynamics of the bog fritillary butterfly: demographic processes in a patchy population. Oikos 97:349–360CrossRefGoogle Scholar
  33. Schtickzelle N, WallisDeVries MF, Baguette M (2005) Using surrogate data in population viability analysis: the case of the critically endangered cranberry fritillary butterfly. Oikos 109:89–100CrossRefGoogle Scholar
  34. Schtickzelle N, Mennechez G, Baguette M (2006) Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87:1057–1065CrossRefPubMedGoogle Scholar
  35. Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture–recapture experiments in open populations. Biometrics 52:860–873CrossRefGoogle Scholar
  36. Vanreusel W, Maes D, Van Dyck H (2007) Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies. Conserv Biol 21:201–212CrossRefPubMedGoogle Scholar
  37. Wahlberg N (2000) Comparative descriptions of the immature stages and ecology of five Finnish Melitaeine butterfly species (Lepidoptera: Nymphalidae). Entomol Fenn 11:167–174Google Scholar
  38. Wahlberg N, Moilanen A, Hanski I (1996) Predicting the occurrence of endangered species in fragmented landscapes. Science 273:1536–1538CrossRefGoogle Scholar
  39. Wahlberg N, Klemetti T, Selonen V, Hanski I (2002) Metapopulation structure and movements in five species of checkerspot butterflies. Oecologia 130:33–43Google Scholar
  40. Wahlberg N, Brower AVZ, Nylin S (2005) Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae). Biol J Linn Soc 86:227–251CrossRefGoogle Scholar
  41. Wang RJ, Wang YF, Chen JJ, Lei GC, Xu RM (2004) Contrasting movement patterns in two species of checkerspot butterflies, Euphydryas aurinia and Melitaea phoebe, in the same patch network. Ecol Entomol 29:367–374CrossRefGoogle Scholar
  42. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Stud 46:120–138CrossRefGoogle Scholar
  43. Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall, LondonGoogle Scholar
  44. Zhang Y, Liu L, Xu R (2009) The effect of migration on the viability, dynamics and structure of two coexisting metapopulations. Ecol Modell 220:272–282CrossRefGoogle Scholar
  45. Zimmermann K, Fric Z, Filipova L, Konvicka M (2005) Adult demography, dispersal and behaviour of Brenthis ino (Lepidoptera: Nymphalidae): how to be a successful wetland butterfly. Eur J Entomol 102:699–706Google Scholar
  46. Zimmermann K, Konvicka M, Fric Z, Cihakova V (2009) Demography of a large and common butterfly: Argynnis aglaja (Lepidoptera, Nymphalidae) studied by mark–recapture. Polish J Ecol (in press)Google Scholar

Copyright information

© The Ecological Society of Japan 2010

Authors and Affiliations

  • Zdenek Fric
    • 1
    • 2
  • Vladimir Hula
    • 3
  • Martina Klimova
    • 2
  • Kamil Zimmermann
    • 1
    • 2
  • Martin Konvicka
    • 1
    • 2
  1. 1.Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
  2. 2.School of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  3. 3.School of AgricultureMendel University of Agriculture and ForestryBrnoCzech Republic

Personalised recommendations