Ecological Research

, Volume 25, Issue 2, pp 375–381 | Cite as

Species assortment or habitat filtering: a case study of spider communities on lake islands

  • Werner Ulrich
  • Izabela Hajdamowicz
  • Marcin Zalewski
  • Marzena Stańska
  • Wojciech Ciurzycki
  • Piotr Tykarski
Original Article


Competition theory predicts that species of similar ecological niches are less likely to coexist than species with different niches, a process called species assortment. In contrast, the concept of habitat filtering implies that species with similar ecological requirements should co-occur more often than expected by chance. Here we use environmental and ecological data to assess patterns of co-occurrence of regional communities of spiders distributed across two assemblies of lake islands in northern Poland. We found aggregated and random co-occurrences of species of the same genus and a significant tendency of species segregation across genera. We also found that species of the same genus react similarly to important environmental variables. A comparison of ecological traits of species of the local communities with those expected from a random sample from the regional Polish species pool corroborated partly the habitat filtering hypothesis. On the other hand, we did not find evidence for species assortment. Our results also imply that at least some observed species co-occurrences result from niche differentiation.


Araneae Spiders Habitat filtering Phylogenetic signal Species/genus ratios Canonical correspondence analysis Ordination 



We thank Maciej Kamiński and the Wigry National Park staff for their generous help during field studies. Andreas Hirler helped to compile data of habitat use and phylogeny. Miss Hazel Pearson kindly improved our English. This work was supported by a grant from the Polish Science Committee (PBZ KBN 087 P04 2003 01 20).


  1. Arachnological Section of Polish Zoological Society (2008) Check-list of spiders (Araneae) of Poland.
  2. Barluenga M, Stölting KM, Salzburger W, Muschick M, Meyer A (2006) Sympatric speciation in Nicaraguan crater like cichlid fish. Nature 439:719–723CrossRefPubMedGoogle Scholar
  3. Bell G (2005) The co-distribution of species in relation to the neutral theory of community ecology. Ecology 86:1757–1770CrossRefGoogle Scholar
  4. Brualdi RA, Sanderson JG (1999) Nested species subsets gaps and discrepancy. Oecologia 119:256–264CrossRefGoogle Scholar
  5. Chase T, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. Chicago University Press, ChicagoGoogle Scholar
  6. Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253CrossRefGoogle Scholar
  7. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471CrossRefPubMedGoogle Scholar
  8. Darwin C (1959) On the origin of species. J. Murray, LondonGoogle Scholar
  9. Davies TJ (2006) Evolutionary ecology: when relatives cannot live together. Curr Biol 16:R646CrossRefGoogle Scholar
  10. Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Harvard, pp 342–444Google Scholar
  11. Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. Proc Natl Acad Sci 105:11549–11555CrossRefPubMedGoogle Scholar
  12. Ellenberg H et al (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–258Google Scholar
  13. Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630CrossRefPubMedGoogle Scholar
  14. Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading moisture and the evolution of the habitat niche. Global Ecol Biogeogr 16:440–448CrossRefGoogle Scholar
  15. Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621CrossRefGoogle Scholar
  16. Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington, DCGoogle Scholar
  17. Heimer S, Nentwig W (1991) Spinnen Mitteleuropas. Ein Bestimmungsbuch, PareyGoogle Scholar
  18. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New JerseyGoogle Scholar
  19. Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology. Trends Ecol Evol 22:250–257CrossRefPubMedGoogle Scholar
  20. Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology 87:86–99CrossRefGoogle Scholar
  21. Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution community assembly and the phylogenetic structure of ecological communities. Am Nat 170:271–283CrossRefPubMedGoogle Scholar
  22. Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322:580–582CrossRefPubMedGoogle Scholar
  23. Losos JB (2008) Phylogenetic niche conservation phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1007CrossRefPubMedGoogle Scholar
  24. Lovette IJ, Hochatka WM (2006) Simultaneous effects of phylogenetic niche conservatism and competition on avian community structure. Ecology 87:14–28CrossRefGoogle Scholar
  25. Peterson AT, Soberón J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267CrossRefPubMedGoogle Scholar
  26. Platen R, von Broen B, Herrman A, Ratschker UM, Sacher P (1999) Gesamtartenliste und Rote Liste der Webspinnen Weberknechte und Pseudoskorpione des Landes Brandenburg (Arachnida: Araneae Opiliones Pseudoscorpiones) mit Angaben zur Häufigkeit und Ökologie. Naturschutz und Landschaftspflege in Brandenburg 8(2)Google Scholar
  27. Platnick NI (2007) The world spider catalog version 7.5. American Museum of Natural History.
  28. Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc R Soc Lond B 268:2383–2389CrossRefGoogle Scholar
  29. Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schamine JHJ, van Groenendael JM (2008) Less lineages more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol Lett 11:809–819CrossRefPubMedGoogle Scholar
  30. Roberts MJ (1995) Collins field guide. Spiders of Britain and Northern Europe. Harper Collins, LondonGoogle Scholar
  31. Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia 85:74–79CrossRefGoogle Scholar
  32. Tofts R, Silvertown J (2000) A phylogenetic approach to community assembly from a local species pool. Proc R Soc Lond B 267:363–369CrossRefGoogle Scholar
  33. Uetz GW, Halaj J, Cady AB (1999) Guild structure of spiders in major crops. J Arachnol 27:270–280Google Scholar
  34. Ulrich W (2004) Species co-occurrences and neutral models: reassessing J. M. Diamond’s assembly rules. Oikos 107:603–609CrossRefGoogle Scholar
  35. Ulrich W, Gotelli NJ (2007a) Null model analysis of species nestedness patterns. Ecology 88:1824–1831CrossRefPubMedGoogle Scholar
  36. Ulrich W, Gotelli NJ (2007b) Disentangling community patterns of nestedness and species co-occurrence. Oikos 116:2053–2061CrossRefGoogle Scholar
  37. Ulrich W, Zalewski M (2007) Are ground beetles neutral? Basic Appl Ecol 8:411–420CrossRefGoogle Scholar
  38. Ulrich W, Zalewski M, Hajdamowicz I, Stańska M, Ciurzycki W, Tykarski P (2009) Tourism disassembles patterns of co-occurrence and weakens responses to environmental conditions of spider communities on small lake islands. Acta Oecologica (in press)Google Scholar
  39. Valiente-Banuet A, Verdú M (2007) Facilitation can increase the phylogenetic diversity of plant communities. Ecol Lett 10:1029–1036CrossRefPubMedGoogle Scholar
  40. Vamosi JC, Vamosi SM (2007) Body size rarity and phylogenetic community structure: insights from diving beetle assemblages of Alberta. Divers Distrib 13:1–10Google Scholar
  41. Verdú M, Pausas JG (2007) Fire drives phylogenetic clustering in Mediterranean basin woody plant communities. J Ecol 95:1316–1323CrossRefGoogle Scholar
  42. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  43. Weiher E, Keddy PA (1999) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, LondonCrossRefGoogle Scholar
  44. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution ecology and conservation biology. Annu Rev Ecol Syst 36:519–539CrossRefGoogle Scholar
  45. Zalewski M, Ulrich W (2006) Dispersal as a key element of community structure: the case of ground beetles on lake islands. Divers Distrib 12:767–775CrossRefGoogle Scholar
  46. Zarzycki K et al (2002) Ecological indicator values of vascular plants of Poland. W. Szafer Institute of Botany Polish Academy of Sciences, KrakówGoogle Scholar
  47. Zillio T, Condit R (2007) The impact of neutrality niche differentiation and species input on diversity and abundance distributions. Oikos 116:931–940CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2009

Authors and Affiliations

  • Werner Ulrich
    • 1
  • Izabela Hajdamowicz
    • 2
  • Marcin Zalewski
    • 3
  • Marzena Stańska
    • 2
  • Wojciech Ciurzycki
    • 4
  • Piotr Tykarski
    • 5
  1. 1.Department of Animal EcologyNicolaus Copernicus University in ToruńToruńPoland
  2. 2.Department of ZoologyUniversity of PodlasieSiedlcePoland
  3. 3.Centre for Ecological ResearchPolish Academy of SciencesDziekanów LeśnyPoland
  4. 4.Department of Forest Botany, Faculty of ForestryWarsaw University of Life Sciences SGGWWarsawPoland
  5. 5.Department of Ecology, Faculty of BiologyUniversity of WarsawWarsawPoland

Personalised recommendations