Advertisement

Ecological Research

, Volume 25, Issue 1, pp 77–82 | Cite as

UV plumage color is an honest signal of quality in male budgerigars

  • Matteo Griggio
  • Valeria Zanollo
  • Herbert Hoi
Original Article

Abstract

Elaborate and colorful feathers are important traits in female mate choice in birds. Plumage coloration can result from pigments deposited in feathers such as carotenoids and melanins, or can be caused by nano-scale reflective tissues (structurally based coloration), usually producing ultraviolet (UV) coloration. Structural colorations remain the least studied of the three most important feather colorations. Previous studies have found a female preference for UV color in the budgerigar, Melopsittacus undulatus, but it is not clear what information this ornament conveys, nor what is the possible cost associated with its production. We investigated possible correlations between immune response and plumage color of wild-type (green) male budgerigars. In particular we measured the wing web swelling resulting from injection of phytohaemagglutinin (PHA). We did not detect any correlation between the sedimentation rate and morphological and color variables. We found that UV chroma is the best predictor for the cutaneous immune activity. Indeed, male budgerigars with high UV reflectance in the breast feathers showed stronger immune responses. These results are consistent with the idea that UV colors are special signals conveying information about a bird’s condition.

Keywords

Feather coloration Ornaments Phytohaemagglutinin Sexual selection Structurally based coloration 

Notes

Acknowledgments

We are grateful to C. Grabmayer and W. Pegler for support with animal husbandry.

References

  1. Andersson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  2. Andersson S (1999) Morphology of UV reflectance in a whistling-thrush: implications for the study of structural colour signalling in birds. J Avian Biol 30:193–204. doi: 10.2307/3677129 CrossRefGoogle Scholar
  3. Apanius V (1998) Stress and immune defence. In: Møller AP, Milinski M, Slater PBJ (eds) Advances in the study of behaviour, 27. Academic Press, San Diego, pp 133–153Google Scholar
  4. Biard C, Surai PF, Møller AP (2006) Carotenoid availability in diet and phenotype of blue and great tit nestlings. J Exp Biol 209:1004–1044. doi: 10.1242/jeb.02089 CrossRefPubMedGoogle Scholar
  5. Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003) Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300:125–127. doi: 10.1126/science.1082142 CrossRefPubMedGoogle Scholar
  6. Bókony V, Liker A, Lendvai ÁZ, Kulcsár A (2008) Risk-taking and survival in the house sparrow Passer domesticus: are plumage ornaments costly? Ibis 150:139–151Google Scholar
  7. Burley NT, Price DK, Zann RA (1992) Bill color, reproduction and condition effects in wild and domesticated zebra finches. Auk 109:12–23Google Scholar
  8. Chew BP (1996) Importance of antioxidant vitamins in immunity and health in animals. Anim Feed Sci Technol 59:103–114. doi: 10.1016/0377-8401(95)00891-8 CrossRefGoogle Scholar
  9. Darwin C (1871) The descent of man and selection in relation to sex. Murray, LondonGoogle Scholar
  10. Davison TF, Morris TR, Payne LN (1996) Poultry immunology. Carfax Publishing Company, OxfordGoogle Scholar
  11. Doucet SM (2002) Structural plumage coloration, male body size, and condition in the blue–black grassquit. Condor 104:30–38. doi: 10.1650/0010-5422(2002)104[0030:SPCMBS]2.0.CO;2 CrossRefGoogle Scholar
  12. Doucet SM, Montgomerie R (2003) Structural plumage colour and parasites in satin bowerbirds Ptilonorhynchus violaceus: implications for sexual selection. J Avian Biol 34:237–242. doi: 10.1034/j.1600-048X.2003.03113.x CrossRefGoogle Scholar
  13. Ewenson E, Zann R, Flannery G (2003) PHA immune response assay in captive zebra finches is modulated by activity prior to testing. Anim Behav 66:797–800. doi: 10.1006/anbe.2003.2251 CrossRefGoogle Scholar
  14. Fargallo JA, Laaksonen T, Korpimäki E, Wakamatsu K (2007) A melanin-based trait reflects environmental growth conditions of nestling male Eurasian kestrels. Evol Ecol 21:157–171. doi: 10.1007/s10682-006-0020-1 CrossRefGoogle Scholar
  15. Fitzpatrick S (1998) Colour scheme for birds: structural coloration and signals of quality in feathers. Ann Zool Fenn 35:67–77Google Scholar
  16. Gill FB (1995) Ornithology. W. H. Freeman, New YorkGoogle Scholar
  17. Grafen A (1990) Biological signals as handicap. J Theor Biol 144:517–546. doi: 10.1016/S0022-5193(05)80088-8 CrossRefPubMedGoogle Scholar
  18. Griffith SC, Örnborg J, Russell AF, Andersson S, Sheldon BC (2003) Correlations between ultraviolet coloration, overwinter survival and offspring sex ratio in the blue tit. J Evol Biol 16:1045–1054. doi: 10.1046/j.1420-9101.2003.00550.x CrossRefPubMedGoogle Scholar
  19. Griggio M, Hoi H (2006) Is preening behaviour sexually selected? An experimental approach. Ethology 112:1145–1151. doi: 10.1111/j.1439-0310.2006.01270.x CrossRefGoogle Scholar
  20. Griggio M, Valera F, Casas A, Pilastro A (2005) Males prefer ornamented females: a field experiment of male choice in the rock sparrow. Anim Behav 69:1243–1250. doi: 10.1016/j.anbehav.2004.10.004 CrossRefGoogle Scholar
  21. Griggio M, Serra L, Licheri D, Monti A, Pilastro A (2007) Armaments and ornaments in the rock sparrow: a possible dual utility of a carotenoid-based feather signal. Behav Ecol Sociobiol 61:423–443. doi: 10.1007/s00265-006-0270-5 CrossRefGoogle Scholar
  22. Griggio M, Serra L, Licheri D, Campomori C, Pilastro A (2009) Moult speed affects structural feather ornaments in the blue tit. J Evol Biol 22:782–792. doi: 10.1111/j.1420-9101.2009.01700.x CrossRefPubMedGoogle Scholar
  23. Hartley RC, Kennedy MW (2004) Are carotenoids a red herring in sexual display? Trends Ecol Evol 19:353–354. doi: 10.1016/j.tree.2004.04.002 CrossRefPubMedGoogle Scholar
  24. Hill GE (1991) Plumage coloration is a sexually selected indicator of male quality. Nature 350:337–339. doi: 10.1038/350337a0 CrossRefGoogle Scholar
  25. Hoi H, Griggio M (2008) Dual utility of a melanin-based ornament in bearded tits. Ethology 114:1094–1100. doi: 10.1111/j.1439-0310.2008.01566.x CrossRefGoogle Scholar
  26. Hudon J (1994) Showiness, carotenoids, and captivity—a comment on Hill (1992). Auk 111:218–221Google Scholar
  27. Hunt S, Cuthill IC, Bennett ATD, Griffiths R (1999) Preferences for ultraviolet partners in the blue tit. Anim Behav 58:809–815. doi: 10.1006/anbe.1999.1214 CrossRefPubMedGoogle Scholar
  28. Jawor JM, Breitwisch R (2003) Melanin ornaments, honesty, and sexual selection. Auk 120:249–265. doi: 10.1642/0004-8038(2003)120[0249:MOHASS]2.0.CO;2 CrossRefGoogle Scholar
  29. Jones IL, Hunter FM (1993) Mutual sexual selection in a monogamous seabird. Nature 362:238–239. doi: 10.1038/362238a0 CrossRefGoogle Scholar
  30. Jourdie V, Moureau B, Bennet ATD, Heeb P (2004) Ultraviolet reflectance by the skin of nestlings. Nature 431:262. doi: 10.1038/431262a CrossRefPubMedGoogle Scholar
  31. Keyser AJ, Hill GE (1999) Condition-dependent variation in the blue-ultraviolet coloration of a structurally based plumage ornament. Proc R Soc Lond B Biol Sci 266:771–777. doi: 10.1098/rspb.1999.0704 CrossRefGoogle Scholar
  32. Lozano GA (1994) Carotenoids, parasites, and sexual selection. Oikos 70:309–311. doi: 10.2307/3545643 CrossRefGoogle Scholar
  33. Martin LB (2005) Trade-offs between molt and immune activity in two populations of house sparrows (Passer domesticus). Can J Zool 83:780–787. doi: 10.1139/z05-114 CrossRefGoogle Scholar
  34. Martin LB, Han P, Lewittes J, Kuhlman JR, Klasting KC, Wikelski M (2006) Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 20:290–299. doi: 10.1111/j.1365-2435.2006.01094.x CrossRefGoogle Scholar
  35. Masello JF, Pagnossin ML, Lubjuhn T, Quillfeldt P (2004) Ornamental non-carotenoid red feathers of wild burrowing parrots. Ecol Res 19:421–432. doi: 10.1111/j.1440-1703.2004.00653.x CrossRefGoogle Scholar
  36. McGraw KJ (2007) Dietary mineral content influences melanin-based ornamental coloration. Behav Ecol 18:137–142. doi: 10.1093/beheco/arl059 CrossRefGoogle Scholar
  37. McGraw KJ, Hill GE (2000) Differential effects of endoparasitism on the expression of carotenoid- and melanin-based ornamental coloration. Proc R Soc Lond B Biol Sci 267:1525–1531. doi: 10.1098/rspb.2000.1174 CrossRefGoogle Scholar
  38. McGraw KJ, Nogare MC (2005) Distribution of unique red feather pigments in parrots. Biol Lett 1:38–43. doi: 10.1098/rsbl.2004.0269 CrossRefPubMedGoogle Scholar
  39. Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poultry Biol Rev 11:137–159Google Scholar
  40. Mougeot F, Redpath SM, Leckie F (2005) Ultra-violet reflectance of male and female red grouse, Lagopus lagopus scoticus: sexual ornaments reflect nematode parasite intensity. J Avian Biol 36:203–209. doi: 10.1111/j.0908-8857.2005.03424.x CrossRefGoogle Scholar
  41. Nolan PM, Dobson FS, Dresp B, Jouventin P (2006) Immunocompetence is signalled by ornamental colour in king penguins, Aptenodytes patagonicus. Evol Ecol Res 8:1325–1332Google Scholar
  42. Norušis MJ (1993) SPSS for Windows base system user’s guide release 6.0. SPSS, ChicagoGoogle Scholar
  43. Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514. doi: 10.1016/S0169-5347(98)01484-0 CrossRefGoogle Scholar
  44. Parker TH, Stansberry BM, Becker CD, Gipson PS (2003) Do melanin- or carotenoid-pigmented plumage ornaments signal condition and predict pairing success in the Kentucky warbler? Condor 105:663–671. doi: 10.1650/7335 CrossRefGoogle Scholar
  45. Pärn H, Lifjeld JT, Amundsen T (2005) Female throat ornamentation does not reflect cell-mediated immune response in bluethroats Luscina s. svecica. Oecologia 146:496–504. doi: 10.1007/s00442-005-0209-y CrossRefPubMedGoogle Scholar
  46. Pearn SM, Bennet ATD, Cuthill IC (2001) Ultraviolet vision, fluorescence and mate choice in a parrot, the budgerigar Melopsittacus undulatus. Proc R Soc Lond B Biol Sci 268:2273–2279. doi: 10.1098/rspb.2001.1813 CrossRefGoogle Scholar
  47. Pearn SM, Bennet ATD, Cuthill IC (2003) The role of ultraviolet-A reflectance and ultraviolet-A-induced fluorescence in budgerigar mate choice. Ethology 109:961–970. doi: 10.1046/j.0179-1613.2003.00936.x CrossRefGoogle Scholar
  48. Peters A, Delhey K, Denk AG, Kempeners B (2004) Trade-offs between immune investment and sexual signalling in male mallards. Am Nat 164:51–59. doi: 10.1086/421302 CrossRefPubMedGoogle Scholar
  49. Peters A, Delhey K, Johnsen A, Kempeners B (2007) The condition-dependent development of carotenoid-based and structural plumage in nestling blue tits: males and females differ. Am Nat 169:S122–S136. doi: 10.1086/510139 CrossRefGoogle Scholar
  50. Prum RO (2006) Anatomy, physics, and evolution of structural colors. In: Hill GE, McGraw KJ (eds) Bird coloration. Vol. I. Mechanisms and measurements. Harvard University Press, Cambridge, pp 295–353Google Scholar
  51. Rohwer S (1975) The social significance of avian winter plumage variability. Evol Int J Org Evol 29:593–610. doi: 10.2307/2407071 Google Scholar
  52. Roulin A, Riols C, Dijkstra C, Ducrest AL (2001) Female plumage spottiness signals parasite resistance in the barn owl (Tyto alba). Behav Ecol 12:103–110. doi: 10.1093/beheco/12.4.506 CrossRefGoogle Scholar
  53. Senar JC (1999) Plumage coloration as a signal of social status. In: Adams NJ, Slotow RH (eds) Proceedings of the International Ornithological Congress, vol 22. BirdLife South Africa, Johannesburg, pp 1669–1686Google Scholar
  54. Serra L, Griggio M, Licheri D, Pilastro A (2007) Moult speed constraints the expression of a carotenoid-based sexual ornament. J Evol Biol 20:2028–2034. doi: 10.1111/j.1420-9101.2007.01360.x CrossRefPubMedGoogle Scholar
  55. Sheldon BC, Andersson S, Griffith SC, Örnborg J, Sendecka J (1999) Ultraviolet colour variation influences blue tit sex ratios. Nature 402:874–877. doi: 10.1038/47239 CrossRefGoogle Scholar
  56. Siefferman L, Hill GE (2005) Evidence for sexual selection on structural plumage coloration in female eastern bluebirds (Sialia sialis). Evol Int J Org Evol 59:1819–1828Google Scholar
  57. Soler JJ, Aviles JM, Cuervo JJ, Perez-Contreras T (2007) Is the relation between colour and immune response mediated by nutritional condition in spotless starling nestlings? Anim Behav 74:1139–1145. doi: 10.1016/j.anbehav.2006.09.026 CrossRefGoogle Scholar
  58. Sturkie PD (1986) Avian physiology, 4th edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  59. Svensson L (1992) Identification guide to European passerines. British Trust of Ornithology, ThetfordGoogle Scholar
  60. Uller T, Andersson S, Eklöf J (2006) Juvenile cell-mediated immune response is negatively correlated with subsequent adult ornament size in quail. Evol Ecol 20:1–9. doi: 10.1007/s10682-005-2006-9 CrossRefGoogle Scholar
  61. Zahavi A (1975) Mate selection—a selection for handicap. J Theor Biol 53:205–214. doi: 10.1016/0022-5193(75)90111-3 CrossRefPubMedGoogle Scholar
  62. Zampiga E, Hoi H, Pilastro A (2004) Preening, plumage reflectance and female choice in budgerigars. Ethol Ecol Evol 16:339–349Google Scholar

Copyright information

© The Ecological Society of Japan 2009

Authors and Affiliations

  1. 1.Konrad Lorenz Institute for EthologyAustrian Academy of SciencesViennaAustria

Personalised recommendations