Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Do spider mite-infested plants and spider mite trails attract predatory mites?


We questioned the well-accepted concept that spider mite-infested plants attract predatory mites from a distance. This idea is based on the preference demonstrated by predatory mites such as Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) for volatiles produced by spider mite-infested plants in a closed environment (Y-tube wind tunnel). However, in natural open environments, kidney bean leaves heavily infested with Tetranychus urticae Koch (Acari: Tetranychidae) did not attract P. persimilis from the same distances as were used in the Y-tube tests. Therefore, the attraction of predatory mites for spider mite-infested plant volatiles in the Y-tube tests may reflect a preference in a closed environment and should be carefully interpreted as a basis for extrapolating predator–prey attraction mechanisms in the wild. On the other hand, we showed that adult female P. persimilis could follow trails laid down by adult female T. urticae in the laboratory and in natural open environments. Consequently, we propose that following spider mite trails represents another prey-searching cue for predatory mites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities, 3rd edn. Blackwell Science, Oxford

  2. Conti E, Salerno G, Bin F, Vinson SB (2004) The role of host semiochemicals in parasitoid specificity: a case study with Trissolcus brochymenae and Trissolcus simony on pentatomid bugs. Biol Control 29:435–444. doi:10.1016/j.biocontrol.2003.08.009

  3. De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573. doi:10.1038/31219

  4. Dicke M, de Boer JG, Höfte M, Rocha-Granados MC (2003) Mixed blends of herbivore-induced plant volatiles and foraging success of carnivorous arthropods. Oikos 101:38–48. doi:10.1034/j.1600-0706.2003.12571.x

  5. Drukker B, Scutareanu P, Sabelis MW (1995) Do anthocorid predators respond to synomones from Psylla-infested pear trees under field conditions? Entomol Exp Appl 77:193–203. doi:10.1007/BF02383034

  6. Gols R, Roosjen M, Dijkman H, Dicke M (2003) Induction of direct and indirect plant responses by Jasmonic acid, low spider mite densities, or a combination of Jasmonic acid treatment and spider mite infestation. J Chem Ecol 29:2651–2666. doi:10.1023/B:JOEC.0000008010.40606.b0

  7. Hoballah MEF, Tamo C, Turlings TCJ (2002) Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: is quality or quantity important? J Chem Ecol 28:951–968. doi:10.1023/A:1015253600083

  8. Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci 9:529–533. doi:10.1016/j.tplants.2004.09.006

  9. Horiuchi J, Arimura G, Ozawa R, Shimoda T, Takabayashi J, Nishioka T (2003) A comparison of the responses of Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) to volatiles emitted from lima bean leaves with different levels of damage made by T. urticae or Spodoptera exigua (Lepidoptera: Noctuidae). Appl Entomol Zool (Jpn) 38:109–116. doi:10.1303/aez.2003.109

  10. Janssen A (1999) Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomol Exp Appl 90:191–198. doi:10.1023/A:1003551931509

  11. Jembere B, Ngi-Song AJ, Overholt W (2003) Olfactory responses of Cotesia flavipes (Hymenoptera: Braconidae) to target and non-target Lepidoptera and their host plants. Biol Control 28:360–367. doi:10.1016/S1049-9644(03)00092-6

  12. Jung C, Croft BA (2001) Ambulatory and aerial dispersal among specialist and generalist predatory mites (Acari: Phytoseiidae). Environ Entomol 30:1112–1118

  13. Kennedy JS (1978) The concepts of olfactory arrestment and attraction. Physiol Entomol 3:91–98. doi:10.1111/j.1365-3032.1978.tb00138.x

  14. Maeda T, Takabayashi J (2001) Production of herbivore-induced plant volatiles and their attractiveness to Phytoseius persimilis (Acari: Phytoseiidae) with changes of Tetranychus urticae (Acari: Tetranychidae) density on a plant. Appl Entomol Zool (Jpn) 36:47–52. doi:10.1303/aez.2001.47

  15. Maeda T, Takabayashi J, Yano S, Takafuji A (1998) Factors affecting the resident time of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) in a prey patch. Appl Entomol Zool Jpn 33:573–576

  16. Margolies D (1995) Evidence of selection on spider mite dispersal rates in relation to habitat persistence in agroecosystems. Entomol Exp Appl 76:105–108. doi:10.1007/BF02382315

  17. McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321. doi:10.1146/annurev.ento.42.1.291

  18. Ninkovic V, Abassi SA, Pettersson J (2001) The influence of aphid-induced plant volatiles on ladybird beetle searching behavior. Biol Control 21:191–195. doi:10.1006/bcon.2001.0935

  19. Opit GP, Nechols JR, Margolies DC (2004) Biological control of twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), using Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseidae) on ivy geranium: assessment of predator release ratios. Biol Control 29:445–452. doi:10.1016/j.biocontrol.2003.08.007

  20. Reddy GVP (2002) Plant volatiles mediate orientation and plant preference by the predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae). Biol Control 25:49–55. doi:10.1016/S1049-9644(02)00038-5

  21. Sabelis MW, Afman BP (1994) Synomone-induced suppression of take-off in the phytoseiid mite Phytoseiulus persimilis Athias-Henriot. Exp Appl Acarol 18:711–721. doi:10.1007/BF00114171

  22. Sabelis MW, Van de Baan HE (1983) Location of distant spider mite colonies by Phytoseiid predators: demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol Exp Appl 33:303–314

  23. Sabelis MW, Vermaat JE, Groeneveld A (1984) Arrestment responses of the predatory mite, Phytoseiulus persimilis, to steep odour gradients of a kairomone. Physiol Entomol 9:437–446. doi:10.1111/j.1365-3032.1984.tb00786.x

  24. Saito Y (1977) Study on spinning behavior of spider mites (Acarina: Tetranychidae). I. Method for quantitative evaluation of the mite webbing, and the relationship between webbing and walking (in Japanese with English summary). Jpn J Appl Entomol Zool 21:27–34

  25. Shimoda T, Takabayashi J, Ashihara W, Takafuji A (1997) Response of predatory insect Scolothrips takahashii toward herbivore-induced plant volatiles under laboratory and field conditions. J Chem Ecol 23:2033–2048. doi:10.1023/B:JOEC.0000006487.49221.df

  26. Stelinski LL, Pelz-Stelinski KS, Liburd OE, Gut LJ (2006) Control strategies for Rhagoletis mendax disrupt host-finding and ovipositional capability of its parasitic wasp, Diachasma alloeum. Biol Control 36:91–99. doi:10.1016/j.biocontrol.2005.07.016

  27. Takabayashi J, Dicke M (1992) Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol Exp Appl 64:187–193

  28. Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113. doi:10.1016/S1360-1385(96)90004-7

  29. Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172. doi:10.1146/annurev.en.37.010192.001041

  30. Yano S (2008) Collective and solitary behaviors of the two-spotted spider mite (Acari: Tetranychidae) are induced by trail following. Ann Entomol Soc Am 101:247–252. doi:10.1603/0013-8746(2008)101[247:CASBOT]2.0.CO;2

  31. Zemek R, Nachman G (1999) Interactions in a tritrophic acarine predator–prey metapopulation system: prey location and distance moved by Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:21–40. doi:10.1023/A:1006156931391

  32. Zemek R, Nackman G, Ruzickova S (2008) How does Phytoseiulus persimilis find its prey when foraging within a beab plant? In: Bertrand M, Kreiter S, McCoy KD, Migeon A, Navajas M, Tixier M-S, Vial L (eds) Integrative acarology. Proceedings of the 6th European congress. European Association of Acarologists, 2008, pp 390–393

Download references


We thank the following people for valuable suggestions and encouragement: T. Akino, A. Arakawa, K. Fujisaki, K. Fukuyama, K. Furuhashi, K. Goka, Y. Hirose, Y. Inui, H. Iida, K. Itoh, Y. Iwasa, F. Kadono, H. Kishimoto, Y. Kunimoto, S. Masui, M. Matsumura, K. Matsuura, T. Miyashita, N. Mori, R. Nishida, T. Namba, E. Numata, K. Oku, M. Ozawa, Y. Saito, M. Sakuma, S. Santoso, Y. Sato, M. Shimada, T. Shinmen, S. Toyoshima, S. Wakamura, T. Yahara, R. Yamaoka, K. Yoshida and members of the Laboratory of Ecological Information. This study was partially funded by a Grant-in-Aid for the Development of New Biorational Techniques for Sustainable Agriculture from the National Agriculture and Food Research Organization and a Grant-in-Aid for the Twenty-first Century COE program of Innovative Food and Environmental Studies Pioneered by Entomomimetic Sciences at Kyoto University.

Author information

Correspondence to Shuichi Yano.

About this article

Cite this article

Yano, S., Osakabe, M. Do spider mite-infested plants and spider mite trails attract predatory mites?. Ecol Res 24, 1173–1178 (2009). https://doi.org/10.1007/s11284-009-0598-1

Download citation


  • Attraction of predators
  • Herbivore-induced plant volatiles
  • Open environment
  • Trail following
  • Y-tube wind tunnel