Ecological Research

, Volume 24, Issue 4, pp 847–854

How the scrub height of dwarf pine Pinus pumila decreases at the treeline

Original Article

Abstract

Plant height decreases much within narrow altitudinal spans near treelines. We compared the stem age, stem inclination and shoot elongation rates of alpine dwarf pine Pinus pumila between the upper distribution limit (treeline, 2,850 m a.s.l.) and the lower distribution limit (2,500 m a.s.l.) on Mount Norikura in central Japan, to examine how the growth traits of P. pumila change with altitude. The mean stem height at the upper distribution limit (49 cm) was about a quarter of that at the lower distribution limit (187 cm). The mean ratio of stem height to length was lower at the upper distribution limit than at the lower distribution limit, indicating that P. pumila stems inclined more at the higher altitude. The mean stem age at the upper distribution limit (48 years) was less than a half of that at the lower distribution limit (109 years). Although the shoot elongation rate positively correlated with stem length at the two altitudes, the shoot elongation rate at a given stem length was lower at the upper distribution limit than at the lower distribution limit. Thus, less developed scrub at the upper distribution limit than at the lower distribution limit was due to shorter stem age, more creeping stems and lower shoot elongation rates. Generally, wind velocity is greater in higher altitudes. Probably, strong wind reduces the growth and mean stem age of P. pumila stems at the upper distribution limit. Therefore, this study concludes that the scrub height of P. pumila is controlled not only by temperature, but also by strong wind.

Keywords

Alpine dwarf pine Mount Norikura Stem height Shoot elongation Timberline 

References

  1. Araki M (1995) Forest meteorology. Tokyo, Kawashima shoten, 202 p (in Japanese)Google Scholar
  2. Baker WL, Weisberg PJ (1995) Landscape analysis of the forest-tundra ecotone in Rocky Mountain National Park, Colorado. Prof Geogr 47:361–375. doi:10.1111/j.0033-0124.1995.00361.x CrossRefGoogle Scholar
  3. Buckley BM, Cook ER, Peterson MJ, Barbetti M (1997) A changing temperature response with elevation for Lagarostrobos franklinii in Tasmania, Australia. Clim Change 36:477–498. doi:10.1023/A:1005322332230 CrossRefGoogle Scholar
  4. Camarero JJ, Gutiérrez E (2002) Plant species distribution across two contrasting treeline ecotones in the Spanish Pyrenees. Plant Ecol 162:247–257. doi:10.1023/A:1020367918521 CrossRefGoogle Scholar
  5. Cuevas JG (2002) Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J Ecol 90:52–60. doi:10.1046/j.0022-0477.2001.00636.x CrossRefGoogle Scholar
  6. Danby RK, Hik DS (2007) Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J Ecol 95:352–363. doi:10.1111/j.1365-2745.2006.01200.x CrossRefGoogle Scholar
  7. DeLucia EH, Smith WK (1987) Air and soil temperature limitations on photosynthesis in Engelmann spruce during summer. Can J For Res 17:527–533. doi:10.1139/x87-088 CrossRefGoogle Scholar
  8. Ettl GJ, Peterson DL (1995) Growth response of subalpine fir (Abies lasiocarpa) to climate in the Olympic Mountains, Washington, USA. Glob Change Biol 1:213–230. doi:10.1111/j.1365-2486.1995.tb00023.x CrossRefGoogle Scholar
  9. Fukuyo S, Kurihara M, Nakashinden I, Kimura K, Iijima Y, Kobayashi Y, Masuzawa T, Yamamoto S, Morimoto M, Kouyama T, Kobayashi S, Yamamoto T, Mizuno K, Machida H (1998) Short-term effects of wind shield on phenology and growth of alpine plants in Mount Kiso-Komagatake, central Japan. Proc Nat Inst Polar Res Symp Polar Biol 11:147–158Google Scholar
  10. Gervais BR, MacDonald GM (2000) A 403-year record of July temperatures and treeline dynamics of Pinus sylvestris from the Kola Peninsula, northwest Russia. Arct Antarct Alp Res 32:295–302. doi:10.2307/1552528 CrossRefGoogle Scholar
  11. Gostev M, Wiles G, D’Arrigo R, Jacoby G, Khomentovsky P (1996) Early summer temperatures since 1670 a.d. for Central Kamchatka reconstructed based on a Siberian larch tree-ring width chronology. Can J For Res 26:2048–2052. doi:10.1139/x26-230 CrossRefGoogle Scholar
  12. Hadley JL, Smith WK (1983) Influence of wind exposure on needle desiccation and mortality for timberline conifers in Wyoming, USA. Arc Antarc Alp Res 15:127–135. doi:10.2307/1550988 CrossRefGoogle Scholar
  13. Hadley JL, Smith WK (1986) Wind effects on needles of timberline conifers: seasonal influence on mortality. Ecology 67:12–19. doi:10.2307/1938498 CrossRefGoogle Scholar
  14. Hoch G, Popp M, Körner C (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98:361–374. doi:10.1034/j.1600-0706.2002.980301.x CrossRefGoogle Scholar
  15. Jones HG (1992) Plants and microclimate, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  16. Jónsson TH (2004) Stature of sub-arctic birch in relation to growth rate, lifespan and tree form. Ann Bot (Lond) 94:753–762. doi:10.1093/aob/mch200 CrossRefGoogle Scholar
  17. Kajimoto T (1992) Dynamics and dry matter production of belowground woody organs of Pinus pumila trees growing on the Kiso mountain range in central Japan. Ecol Res 7:333–339. doi:10.1007/BF02347100 CrossRefGoogle Scholar
  18. Kajimoto T (1993) Shoot dynamics of Pinus pumila in relation to altitudinal and wind exposure gradients on the Kiso mountain range, central Japan. Tree Physiol 13:41–53PubMedGoogle Scholar
  19. Kajimoto T, Daimaru H, Okamoto T, Otani T, Onodera H (2004) Effects of snow avalanche disturbance on regeneration of subalpine Abies mariesii forest, northern Japan. Arct Antarct Alp Res 36:436–445. doi:10.1657/1523-0430(2004)036[0436:EOSADO]2.0.CO;2 CrossRefGoogle Scholar
  20. Kajimoto T, Kurachi N, Chiba Y, Utsugi H, Ishizuka M (1996) Effects of external factors on growth and structure of Pinus pumila scrub in Mt. Kinpu, central Japan. In: Omasa K, Kai K, Taoda H, Uchijima Z, Yoshino M (eds) Climate change and plants in East Asia. Springer, Tokyo, pp 149–156Google Scholar
  21. Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459. doi:10.1007/s004420050540 CrossRefGoogle Scholar
  22. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732Google Scholar
  23. Kullman L (1986) Recent tree-limit history of Picea abies in the southern Swedish Scandes. Can J For Res 16:761–771. doi:10.1139/x86-136 CrossRefGoogle Scholar
  24. MacDonald GM, Case RA, Szeicz JM (1998) A 538-year record of climate and treeline dynamics from the lower Lena River region of northern Siberia, Russia. Arct Alp Res 30:334–339. doi:10.2307/1552005 CrossRefGoogle Scholar
  25. Maruta E, Nakano T, Ishida A, Iida H, Masuzawa T (1996) Water relations of Pinus pumila in the snow melting season at the alpine region of Mt. Tateyama. Proc Nat Inst Polar Res Symp Polar Biol 9:335–342Google Scholar
  26. Miyajima Y, Sato T, Takahashi K (2007) Altitudinal changes in vegetation of tree, herb and fern species on Mount Norikura, central Japan. Veg Sci 24:29–40Google Scholar
  27. Miyajima Y, Takahashi K (2007) Changes with altitude of the stand structure of temperate forests on Mount Norikura, central Japan. J For Res 12:187–192. doi:10.1007/s10310-007-0002-3 CrossRefGoogle Scholar
  28. Miyawaki A (ed) (1985) Vegetation of Japan 6, Chubu. Shibundo, Tokyo (in Japanese)Google Scholar
  29. Natori Y, Matsuda Y (1966) The age and the thickening growth of Pinus pumila Regel on Mt. Norikura in Honshu, Japan. Jpn J Ecol 16:247–251 (in Japanese)Google Scholar
  30. Okitsu S (1987) Age estimation of above-ground parts of Pinus pumila Regel stands in Japan. J Jpn Soc For 69:195–197 (in Japanese)Google Scholar
  31. Okitsu S (1991) The Pinus pumila zone during the last glacial age in Japan. Reconstructed from present growth and distribution of Pinus pumila. Quat Res 30:281–290 (in Japanese)Google Scholar
  32. Okitsu S (1998) Distribution and growth of Pinus pumila Regel along the Larix gmelinii (Rupr.) Rupr. timberline ecotone of Mt. Dal’nyaya Ploskaya, central Kamchatka. Proc Nat Inst Polar Res Symp Polar Biol 11:159–168Google Scholar
  33. Okitsu S, Ito K (1983) Dynamic ecology of the Pinus pumila community of Mts. Taisetsu, Hokkaido, Japan. Environ Sci Hokkaido Univ 6:151–184 (in Japanese)Google Scholar
  34. Okitsu S, Ito K (1984) Vegetation dynamics of the Siberian dwarf pine (Pinus pumila Regel) in the Taisetsu mountain range, Hokkaido, Japan. Vegetatio 58:105–113. doi:10.1007/BF00044934 CrossRefGoogle Scholar
  35. Okitsu S, Mizoguchi T (1990) Relation between cone production and stem diameter and stem elongation of Pinus pumila Regel of Japanese high mountains. Jpn J Ecol 40:49–55 (in Japanese)Google Scholar
  36. Pereg D, Payette S (1998) Development of black spruce growth forms at treeline. Plant Ecol 138:137–147. doi:10.1023/A:1009756707596 CrossRefGoogle Scholar
  37. Peterson DW, Peterson DL (2001) Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology 82:3330–3345CrossRefGoogle Scholar
  38. Saito M, Irie M (2002) Meteorological observations at Norikura Solar Observatory. Rep Nat Astron Obs Jpn 6:37–47 (in Japanese)Google Scholar
  39. Stöhr D (2007) Soils: heterogeneous at a microscale. In: Wieser G, Tausz M (eds) Trees at their upper limit. Springer, Dordrecht, pp 37–56CrossRefGoogle Scholar
  40. Takahashi K (2003) Effects of climatic conditions on shoot elongation of alpine dwarf pine (Pinus pumila) at its upper and lower altitudinal limits in central Japan. Arct Antarct Alp Res 35:1–7. doi:10.1657/1523-0430(2003)035[0001:EOCCOS]2.0.CO;2 CrossRefGoogle Scholar
  41. Takahashi K (2005a) Seasonal changes in soil temperature at upper windy ridge and lower leeward slope in Pinus pumila scrub on Mt. Shogigashira, central Japan. Polar Biosci 18:82–89Google Scholar
  42. Takahashi K (2005b) Effects of artificial warming on shoot elongation of alpine dwarf pine (Pinus pumila) on Mt. Shogigashira, central Japan. Arct Antarct Alp Res 37:620–625. doi:10.1657/1523-0430(2005)037[0620:EOAWOS]2.0.CO;2 CrossRefGoogle Scholar
  43. Takahashi K (2006) Shoot growth chronology of alpine dwarf pine (Pinus pumila) in relation to shoot size and climatic conditions: a reassessment. Polar Biosci 19:123–132Google Scholar
  44. Takahashi K, Tokumitsu Y, Yasue K (2005) Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, central Japan. Ecol Res 20:445–451. doi:10.1007/s11284-005-0060-y CrossRefGoogle Scholar
  45. Wang T, Zhang QB, Ma K (2006) Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China. Glob Ecol Biogeogr 15:406–515. doi:10.1111/j.1466-822X.2006.00233.x CrossRefGoogle Scholar
  46. Warren Wilson J (1959) Notes on wind and its effects in arctic-alpine vegetation. J Ecol 47:415–427. doi:10.2307/2257374 CrossRefGoogle Scholar
  47. Wieser G (2007) Climate at the upper treeline. In: Wieser G, Tausz M (eds) Trees at their upper limit. Springer, Dordrecht, pp 19–36CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2008

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceShinshu UniversityMatsumotoJapan
  2. 2.Laboratory of Plant Molecular Biology, Graduate School of Biological ScienceNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations