Ecological Research

, 24:257 | Cite as

Pearl bodies of Cayratia japonica (Thunb.) Gagnep. (Vitaceae) as alternative food for a predatory mite Euseius sojaensis (Ehara) (Acari: Phytoseiidae)

  • Mayuko Ozawa
  • Shuichi Yano
Original Article


On the young leaves, shoots, and buds of Cayratia japonica (Thunb.) Gagnep. (Vitaceae), we observed nutritious bodies called pearl bodies and hypothesized that they are utilized by generalist predators as alternative foods. Some ambulate organisms consume pearl bodies in the wild and the predatory mite Euseius sojaensis (Ehara) (Acari: Phytoseiidae) was considered as a primary candidate. Pearl bodies promoted E. sojaensis settlement on C. japonica leaves and E. sojaensis could prey on the phytophagous mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when the predators settle on a leaf before the prey. In addition, the presence of pearl bodies did not reduce predation of E. sojaensis on T. kanzawai. This was seemingly because food quality of T. kanzawai was higher than pearl bodies. These results implied that pearl bodies on C. japonica leaves are utilized by E. sojaensis as alternative foods.


Pearl body Cayratia japonica Alternative food Euseius sojaensis Tetranychus kanzawai 



We thank Dr. A. Kasai for identification of E. sojaensis and Mr. T. Kawasaki for valuable suggestions. Dr. M. Fitz-Earle improved the manuscript. This study was partly supported by a funding from the development of new biorational techniques for sustainable agriculture and a Grant-in-Aid for the 21st Century COE program of Innovative Food and Environmental Studies Pioneered by Entomomimetic Sciences in Kyoto University.


  1. Amano H (1996) Natural enemies. In: Ehara S, Shinkaji N (eds) Principles of plant acarology (in Japanese). Zenkoku Noson Kyoiku Kyokai, Tokyo, 165 ppGoogle Scholar
  2. Bentley BL (1977) Extrafloral nectarines and protection by pugnacious bodyguards. Annu Rev Ecol Syst 8:407–427CrossRefGoogle Scholar
  3. Coley PD (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53:209–233CrossRefGoogle Scholar
  4. Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899PubMedCrossRefGoogle Scholar
  5. Feeny P (1976) Plant apparency and chemical defense. In: Wallace JW, Mansell RL (eds) Biochemical interaction between plants and insects. Plenum, New York, pp 1–40Google Scholar
  6. Fiala B, Linsenmair KE (1995) Distribution and abundance of plants with extrafloral nectarines in the woody flora of a lowland primary forest in Malaysia. Biodiv Cons 4:165–182CrossRefGoogle Scholar
  7. Fiala B, Maschwitz U (1992) Food bodies and their significance for obligate ant-associaation in the tree genus Macaranga (Euphorbiaceae). Bot J Linn Soc 110:61–75CrossRefGoogle Scholar
  8. Fiala B, Maschwitz U, Pong TY, Helbig AJ (1989) Studies of a South East Asian ant–plant association: protection of Macaranga trees by Crematogaster borneensis. Oecologia (Berl) 79:463–470CrossRefGoogle Scholar
  9. Fritz RS, Simms EL (1992) Plant resistance to herbivores and pathogens. The University of Chicago Press, ChicagoGoogle Scholar
  10. Furuichi H, Oku K, Yano S, Takafuji A, Osakabe Mh (2005) Why does the predatory mite Neoseiulus womersleyi Schicha (Acari: Phytoseiidae) prefer spider mite eggs to adults? Appl Entomol Zool 40:675–678CrossRefGoogle Scholar
  11. Kasai A, Yano S, Takafuji A (2002) Density of the eriphyid mites inhabiting the domatia of Cinnamomun camphora Linn. affects the density of the predatory mite, Amblyseius sojaensis Ehara (Acari: Phytoseiidae), not inhabiting the domatia. Appl Entomol Zool 37:617–619CrossRefGoogle Scholar
  12. Kasai A, Yano S, Takafuji A (2005) Prey-predator mutualism in a tritrophic system on a camphor tree. Ecol Res 20:163–166CrossRefGoogle Scholar
  13. Kitamura S, Murata G (1961) Colored illustrations of herbaceous plants of Japan Vol. II (Choripetalae). Revised edition. 1994 (in Japanese). Hoikusha Publishing, Osaka, 71 ppGoogle Scholar
  14. Kondo A, Takafuji A (1985) Resource utilization pattern of two species of tetranychid mites (Acarina: Tetranychidae). Res Popul Ecol 27:145–157CrossRefGoogle Scholar
  15. Levin DA (1973) The role of trichomes in plant defense. Q Rev Biol 48:3–15CrossRefGoogle Scholar
  16. McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Ann Rev Entomol 42:291–321CrossRefGoogle Scholar
  17. Meyen FJF (1837) Über die Sekretionsorgane der Pflanzen. Königl Societät der Wissenschaften zu Göttingen, BerlinGoogle Scholar
  18. Momiyama T (1982) Vitaceae. In: Satake Y, Ohwi J, Kitamura S, Watari S, Tominari T (eds) Wild flowers of Japan. Herbaceous plants (including dwarf subshrubs). 1982 (in Japanese). Heibonsha Publishers, Tokyo, 238 pp Google Scholar
  19. Morimoto K, Furuichi H, Yano S, Osakabe MH (2006) Web-mediated interspecific competition among spider mites. J Econ Entomol 99:678–684PubMedCrossRefGoogle Scholar
  20. O’Dowd DJ (1980) Pearl bodies of a neotropical tree, Ochroma pyramidale: ecological implications. Am J Bot 67:543–549CrossRefGoogle Scholar
  21. O’Dowd DJ (1982) Pearl bodies as ant food: an ecological role for some leaf emergences of tropical plants. Biotropica 14:40–49CrossRefGoogle Scholar
  22. Oku K, Yano S (2007) Spider mites (Acari: Tetranychidae) deform their host plant leaves: An investigation from the viewpoint of predator avoidance. Ann Entomol Soc Am 100:69–72CrossRefGoogle Scholar
  23. Osakabe Mh (1988) Relationships between food substances and developmental success in Amblyseius sojaensis Ehara (Acarina: Phytoseiidae). Appl Entomol Zool 23:45–51Google Scholar
  24. Osakabe Mh, Inoue K, Ashihara W (1986) Feeding, reproduction and development of Amblyseius sojaensis Ehara (Acarina: Phytoseiidae) on two species of spider mites and on tea pollen. Appl Entomol Zool 21:322–327Google Scholar
  25. Osakabe Mh, Inoue K, Ashihara W (1987) Effect of Amblyseius sojaensis Ehara (Acarina: Phytoseiidae) as a predator of Panonychus citri (McGrefor) and Tetranychus kanzawai Kishida (Acarina: Tetranychidae). Appl Entomol Zool 22:594–599Google Scholar
  26. Penzig O (1893) Über die Perldrüsen des Weinstockes und anderer Pflanzen. In: Penzig O (ed) Atti del congresso botanico internazionale di Genova 1892. Tip. Del R. Instituto Sordo-multi, Genova, pp 237–245Google Scholar
  27. Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. Rec Adv Phytochem 10:168–213Google Scholar
  28. Rickson FR (1976) Anatomical development of the leaf trichilium and Mullerian bodies of Cecropia peltata L. Am J Bot 63:1266–1271CrossRefGoogle Scholar
  29. Rickson FR (1980) Developmental anatomy and ultrastructure of the ant food bodies (Beccarian bodies) of Macaranga triloba and M. hypoleuca (Euphorbiaceae). Am J Bot 67:285–292CrossRefGoogle Scholar
  30. Ridley HN (1910) Symbiosis of ants and plants. Ann Bot 24:457–483Google Scholar
  31. Risch S, McClure M, Vandemeer J, Waltz S (1977) Mutualism between three species of tropical Piper (Piperaceae) and their ant inhabitants. Am Midl Nat 98:433–443CrossRefGoogle Scholar
  32. Saito Y (1983) The concept of “life types” in Tetranychidae. An attempt to classify the spinning behavior of Tetranychinae. Acarologia 24:377–391Google Scholar
  33. SAS Institute Inc. (1998) SAS/STAT user’s guide, release 6.03 edition. SAS Institute, CaryGoogle Scholar
  34. Shimane Agricultural Experiment Station (1996) Shoot growth prediction and crop production of grape ‘Delaware’ vines. Accessed 1-10-2007
  35. Shibao M, Ehara S, Hosomi A, Tanaka H (2004) Seasonal fluctuation in population density of phytoseiid mites and the yellow tea thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) on grape, and predation of the thrips by Euseius sojaensis (Ehara) (Acari: Phytoseiidae). Appl Entomol Zool 39:727–730CrossRefGoogle Scholar
  36. Takafuji A, Morishita M (2001) Overwintering ecology of two species of spider mites (Acari: Tetranychidae) on different host plants. Appl Entomol Zool 36:169–175CrossRefGoogle Scholar
  37. Tilman D (1978) Cherries, ants, and tent caterpillars: timing of nectar production in relation to susceptibility of caterpillar to ant predation. Ecology 59:686–692CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2008

Authors and Affiliations

  1. 1.Laboratory of Ecological Information, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations