Ecological Research

, 24:31 | Cite as

Does global warming induce segregation among alien and native beetle species in a mountain-top?

  • Marco A. Molina-Montenegro
  • Raúl Briones
  • Lohengrin A. Cavieres
Original Article

Abstract

The last few centuries have seen an increase in the mean air temperature of the planet, a phenomenon that is called “global warming”. One of the most sensitive habitats to the effects of global warming is the high-elevation mountain environments, because these habitats are characterized by low temperature. Cushion plants are one of the best-adapted growth forms in this habitat, generating more suitable sites for other plants and insects. In the present study, we experimentally evaluated the effects of global warming by open-top chambers on the abundance and interaction of two ladybirds at 3,600 m, growing over cushions of the Azorella monantha species in the Andes of central Chile. Additionally, we measured variation in temperature, water content, and food availability by the presence of open-top chambers as possible mechanisms of spatial segregation between ladybirds. Without open-top chambers, the abundance of native and alien beetles was similar; but with open-top chambers, the native beetle species is spatially segregated by alien species, decreasing in abundance. The open-top chambers increase temperature and food availability, but not water content. We suggest that under the global warming scenario, the native insects will decrease in abundance or become extinct by the presence of alien insects, at least in the high-elevation mountain environments.

Keywords

Alien species Cushion plants Global warming High-elevation mountain environments Ladybirds Open-top chambers 

References

  1. Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326PubMedCrossRefGoogle Scholar
  2. Cannon RJ (1998) The implications of predicted climate change for insect pest in the UK, with emphasis on non-indigenous species. Glob Chang Biol 4:785–796CrossRefGoogle Scholar
  3. Cavieres LA, Badano EI, Sierra-Almeida A, Gómez-González S, Molina-Montenegro MA (2006) Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytol 169:59–69PubMedCrossRefGoogle Scholar
  4. Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arct Antarct Alp Res 39:229–236CrossRefGoogle Scholar
  5. Cavieres LA, Quiroz CL, Molina-Montenegro MA (2008) Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: are there differences between nurses? Funct Ecol 22:148–156CrossRefGoogle Scholar
  6. Di Castri F, Hajek E (1976) Bioclimatología de Chile. Ediciones de la Pontificia Universidad Católica de Chile, SantiagoGoogle Scholar
  7. Dixon AFG (2000) Insect predator-prey dynamics: ladybird beetles and biological control. Cambridge University Press, Cambridge, p 257Google Scholar
  8. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139PubMedCrossRefGoogle Scholar
  9. Fajardo A, Quiroz C, Cavieres LA (2008) Spatial structures in cushion-dominated plant communities of the high-Andes of central Chile: how frequent are positive associations? J Veg Sci 19:87–96CrossRefGoogle Scholar
  10. Henry GHR, Molau U (1997) Tundra plants and climate change: The International Tundra Experiment (ITEX). Glob Chang Biol 3:1–9CrossRefGoogle Scholar
  11. Hoffman A, Kalin-Arroyo MTK, Liberona F, Muñoz M, Watson J (1998) Plantas altoandinas. Imprenta Salesianos. Santiago de ChileGoogle Scholar
  12. Howarth FG (2000) Non-target effects of biological control agents. In: Gurr G, Wratten S (eds) Biological controls: measures of success. Kluwer, Dordrecht, pp 369–403Google Scholar
  13. Human KG, Gordon DM (1996) Exploitation and interference competition between the invasive Argentine ant, Linephitema humile, and native ant species. Oecologia 105:405–412CrossRefGoogle Scholar
  14. IPCC (2007) Intergovernmental panel on climate change. http://www.ipcc.ch
  15. Kimberling DN (2004) Lessons from history: predicting successes and risks of intentional introductions for arthropod biological controls. Biol Invasions 6:310–318CrossRefGoogle Scholar
  16. Körner C (2003) Alpine plant life. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Kreman C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808CrossRefGoogle Scholar
  18. Labrie G, Lucas E, Coderre D (2006) Can developmental and behavioral characteristics of the multicolored Asian lady beetle Harmonia axyridis explain its invasive success? Biol Invasions 8:743–754CrossRefGoogle Scholar
  19. Lanzoni A, Accinelli G, Bazzocchi GG, Burgio G (2004) Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col.: Coccinellidae). J Appl Entomol 128:298–306CrossRefGoogle Scholar
  20. Lombardero MJ, Ayres MP, Ayres BD, Reeve JD (2000) Cold tolerance of four species of bark beetle (Coleoptera: Scolytidae) in North America. Environ Entomol 29:421–432CrossRefGoogle Scholar
  21. Loik ME, Redar SP, Hartes J (2004) Photosynthetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA. Funct Ecol 14:166–175CrossRefGoogle Scholar
  22. Margraf N, Gotthard K, Rahier M (2003) The growth strategy of an alpine beetle: maximization or individual growth adjustment in relation to seasonal time horizons? Funct Ecol 17:605–610CrossRefGoogle Scholar
  23. McDougall KL, Morgan JW, Walsh NG, Williams RJ (2005) Plant invasions in treeless vegetation of the Australian Alps. Perspect Plant Ecol Evol Syst 7:159–172CrossRefGoogle Scholar
  24. Milléo J, Tesserolli J, Pena J, Enrique G (2007) Coccinellids (Insecta, Coleoptera) present on vegetables (Ponta Grosa–PR). Exatas Terra Ci Agric Eng Ponta Grossa 13:71–80Google Scholar
  25. Molau U, Molgaard P (1996) ITEX manual. Danish Polar Centre, CopenhagenGoogle Scholar
  26. Molina-Montenegro MA, Badano EI, Cavieres LA (2006) Cushion plants as microclimatic shelters for two ladybird beetles species in alpine zone of central Chile. Arct Antarct Alp Res 38:222–227CrossRefGoogle Scholar
  27. Mori K, Nozawa M, Arai K, Gotoh T (2005) Life-history traits of the acarophagous lady beetle Stethorus japonicus at three constant temperatures. Biocontrol 50:35–51CrossRefGoogle Scholar
  28. Nice CC, Fordyce JA (2005) How caterpillars avoid overheating: behavioral and phenotypic plasticity of pipevine swallowtail larvae. Oecologia 146:541–548PubMedCrossRefGoogle Scholar
  29. Osawa N (2000) Population field studies on the aphidophagous ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae): resource tracking and population characteristics. Popul Ecol 42:115–127CrossRefGoogle Scholar
  30. Patterson DT, Westbrook JK, Joyce RJ, Lindgren PD, Rogasik J (1999) Weeds, insects, and diseases. Clim Change 43:711–727CrossRefGoogle Scholar
  31. Sala OE, Chapin FS III, Armesto JJ, Berlow R, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge D, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  32. Santibáñez F, Uribe JM (1990) Atlas Agroclimático de la V Región y Región Metropolitana. Universidad de Chile, SantiagoGoogle Scholar
  33. Sax DF, Gaines SD (2003) Species diversity: from global decrease to local increase. Trends Ecol Evol 18:561–566CrossRefGoogle Scholar
  34. Smith FDM, May RM, Pellew R, Johnson TH, Walter KS (1993) Estimating extinction rates. Nature 364:494–496CrossRefGoogle Scholar
  35. Sutherst RW, Maywald GF, Skarrat DB (1995) Predicting insect distributions in a changed climate. In: Harrington R, Stork NE (eds) Insects in a changing environment. Academic Press, London, pp 60–91Google Scholar
  36. Thomas DC, Cameron A, Green RE, Bakkenes R, Beaumont LJ, Collingham YC, BFN Erasmus, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend-Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148PubMedCrossRefGoogle Scholar
  37. Walther GR (2003) Plants in a warmer world. Perspect Pl Ecol Evol Syst 6:169–185CrossRefGoogle Scholar
  38. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoatel S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69PubMedCrossRefGoogle Scholar
  39. Welker JM, Fahnestock JC, Henry GHR, O´Dea KW, Chimners RA (2004) CO2 exchange in three Canadian high arctic ecosystems: response to long-term experimental warming. Glob Chang Biol 10:1981–1995CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2008

Authors and Affiliations

  • Marco A. Molina-Montenegro
    • 1
    • 2
  • Raúl Briones
    • 3
  • Lohengrin A. Cavieres
    • 1
    • 2
  1. 1.Departamento de Botánica, ECOBIOSISUniversidad de ConcepciónConcepciónChile
  2. 2.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
  3. 3.Departamento de Zoología, Laboratorio de Sistemática y Biología de ColeópterosUniversidad de ConcepciónConcepciónChile

Personalised recommendations