Ecological Research

, Volume 23, Issue 6, pp 983–993

Monotropastrum humile var. humile is associated with diverse ectomycorrhizal Russulaceae fungi in Japanese forests

  • Akiyoshi Yamada
  • Daisei Kitamura
  • Masanobu Setoguchi
  • Yosuke Matsuda
  • Yasushi Hashimoto
  • Norihisa Matsushita
  • Masaki Fukuda
Original Article


Monotropastrum humile is nearly lacking in chlorophyll and obtains its nutrients, including carbon sources, from associated mycorrhizal fungi. We analyzed the mycorrhizal fungal affinity and species diversity of M. humile var. humile mycorrhizae to clarify how the plant population survives in Japanese forest ecosystems. We classified 78 samples of adult M. humile var. humile individuals from Hokkaido, Honshu, and Kyusyu Islands into 37 root mycorrhizal morphotypes. Of these, we identified 24 types as Russula or Lactarius fungal taxa in the Russulaceae, Basidiomycetes, but we could not identify the remaining 13 types as to their genus in the Basidiomycetes. The number of fungal species on M. humile var. humile was the highest in the plant subfamily. The diversity of fungal species revealed its increased trends in natural forests at the stand level, fagaceous vegetation, and cool-temperate climate. The most frequently observed fungus colonized mainly samples collected from sub-alpine forests; the second most frequently observed fungus colonized samples collected from sub-alpine to warm-temperate forests. These results suggest that Japanese M. humile populations are associated with specific but diverse fungi that are common ectomycorrhizal symbionts of various forest canopy trees, indicating a tripartite mycorrhizal relationship in the forest ecosystem.


Ectomycorrhizal symbiosis Fungal species diversity Myco-heterotrophy Non-photosynthetic plants Tripartite relationship 


  1. Adhikari MK (2000) Mushrooms of Nepal. G Adhikari, KatmanduGoogle Scholar
  2. Agerer R (1987–2002) Colour Atlas of Ectomycorrhizae, 1st–12th delivery. Einhorn, MunichGoogle Scholar
  3. Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352PubMedCrossRefGoogle Scholar
  4. Bidartondo MI, Bruns TD (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Mol Ecol 10:2285–2295PubMedCrossRefGoogle Scholar
  5. Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569PubMedCrossRefGoogle Scholar
  6. Bidartondo MI, Bruns TD (2005) On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Mol Ecol 14:1549–1560PubMedCrossRefGoogle Scholar
  7. Bidartondo MI, Kretzer AM, Pine EM, Bruns TD (2000) High root concentration and uneven ectomycorrhizal diversity near Sarcodes sanguinea (Ericaceae): a cheater that stimulates its victims? Am J Bot 87:1783–1788PubMedCrossRefGoogle Scholar
  8. Bills GF, Holtzman GI, Miller OK (1986) Comparison of ectomycorrhizal–basidiomycete communities in red spruce versus northern hardwood forests of West Virginia. Can J Bot 64:760–768CrossRefGoogle Scholar
  9. Björkman E (1960) Monotropa hypopithys L.: an epiparasite on tree roots. Physiol Plant 13:308–327CrossRefGoogle Scholar
  10. Brunner I, Brunner F, Lausen GA (1992) Characterization and comparison of macrofungal communities in an Alnus tenuifolia and an Alnus crispa forest in Alaska. Can J Bot 70:1247–1258CrossRefGoogle Scholar
  11. Cullings KW, Szaro TM, Bruns T (1996) Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379:63–66CrossRefGoogle Scholar
  12. Duddridge JA, Read DJ (1982) An ultrastructural analysis of the development of mycorrhizae in Monotropa hypopithys L. New Phytol 92:203–214CrossRefGoogle Scholar
  13. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  14. Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583CrossRefGoogle Scholar
  15. Gardes M, Dahlberg A (1996) Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol 133:147–157CrossRefGoogle Scholar
  16. Hara H (1965) New or noteworthy flowering plants from Eastern Himalaya (4). J Jpn Bot 40:97–103Google Scholar
  17. Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of Ectomycorrhizas. HSMO, LondonGoogle Scholar
  18. Kasuya MCM, Masaka K, Igarashi T (1995) Mycorrhizae of Monotropastrum globosum growing in a Fagus crenata forest. Mycoscience 36:461–464CrossRefGoogle Scholar
  19. Keinänen M, Julkunen-Tiitto R, Rousi M, Tahvanainen J (1999) Taxonomic implications of phenolic variation in leaves of birch (Betula L.) species. Biochem Syst Ecol 27:243–254CrossRefGoogle Scholar
  20. Kernaghan G, Currah RS, Bayer RJ (1997) Russulaceous ectomycorrhizae of Abies lasiocarpa and Picea engelmannii. Can J Bot 75:1843–1850Google Scholar
  21. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Dictionary of the fungi, 9th edn. CAB International, WallingfordGoogle Scholar
  22. Kretzer AM, Bidartondo MI, Grubisha LC, Spatafora JW, Szaro TM, Bruns TD (2000) Regional specialization of Sarcodes sanguinea (Ericaceae) on a single fungal symbiont from the Rhizopogon ellenae (Rhizopogonaceae) species complex. Am J Bot 87:1778–1783PubMedCrossRefGoogle Scholar
  23. Largent D, Johnson D, Watling R (1977) How to identify mushrooms to genus III: microscopic features. Mad River Press, EurekaGoogle Scholar
  24. Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216CrossRefGoogle Scholar
  25. Leake JR, Mckendrick SL, Bidartondo M, Read DJ (2005) Symbiotic germination and development of the myco-heterotroph Monotropa hypopithys in nature and its requirement for locally distributed Tricholoma spp. New Phytol 163:405–423CrossRefGoogle Scholar
  26. Lee SS, Alexander IJ, Watling R (1997) Ectomycorrhizas and putative ectomycorrhizal fungi of Shorea leprosula Miq. (Dipterocarpaceae). Mycorrhiza 7:63–81CrossRefGoogle Scholar
  27. Martin F (1985) Sur la mycorhization de Monotropa hypopithys par quelques espèces du genre Tricholoma. Bull Soc Myc Fr 101:249–256Google Scholar
  28. Massicotte HB, Melville LH, Peterson RL (2005) Structural features of mycorrhizal associations in two members of the Monotropoideae, Monotropa uniflora and Pterospora andromedea. Mycorrhiza 15:101–110PubMedCrossRefGoogle Scholar
  29. Matsuda Y, Hijii N (1998) Spatiotemporal distribution of fruit bodies of ectomycorrhizal fungi in an Abies firma forest. Mycorrhiza 8:131–138CrossRefGoogle Scholar
  30. Matsuda Y, Yamada A (2003) Mycorrhizal association of Monotropa globosum collected from five different forests in central Japan. Mycologia 95:993–997CrossRefGoogle Scholar
  31. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 357–423Google Scholar
  32. Murakami Y (1987) Spatial distribution of Russula species in Castanopsis cupidata forest. Trans Br Mycol Soc 89:187–193Google Scholar
  33. Rice EL (1984) Allelopathy, 2nd edn. Academic Press, New YorkGoogle Scholar
  34. Richardson MJ (1970) Studies on Russula emetica and other agarics in a Scots pine plantation. Trans Br Mycol Soc 55:217–229CrossRefGoogle Scholar
  35. Robertson DC, Robertson JA (1982) Ultrastructure of Pterospora andromedea Nuttrall and Sarcodes sanguinea Torrey mycorrhizas. New Phytol 92:539–551CrossRefGoogle Scholar
  36. Santamour JFS, Lundgren LN (1997) Rhododendrin in Betula: a reappraisal. Biochem Syst Ecol 25:335–341CrossRefGoogle Scholar
  37. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San DiegoGoogle Scholar
  38. Southworth D, He X-H, Swenson W, Bledsoe CS, Horwath WR (2005) Application of network theory to potential mycorrhizal networks. Mycorrhiza 15:589–595PubMedCrossRefGoogle Scholar
  39. Tsukaya H (1998) Flowering time of two saprophytic plants, Monotropa uniflora L. and Monotropastrum humile (D. Don.) Hara. J Plant Res 111:595–597CrossRefGoogle Scholar
  40. Wallace GD (1975) Studies of the Monotropoideae (Ericaceae) taxonomy and distribution. Wasmann J Bot 33:1–88Google Scholar
  41. Watling R, Lee SS (1998) Ectomycorrhizal fungi associated with members of the Dipterocarpaceae in peninsular Malaysia—II. J Trop For Sci 10:421–430Google Scholar
  42. Yamada A, Katsuya K (2001) The disparity between the number of ectomycorrhizal fungi and those producing fruit bodies in a Pinus densiflora stand. Mycol Res 105:957–965CrossRefGoogle Scholar
  43. Yamada A, Ogura T, Ohmasa M (2001) Cultivation of mushrooms of edible ectomycorrhizal fungi associated with Pinus densiflora by in vitro mycorrhizal synthesis II. Morphology of ectomycorrhizas in open-pot soil. Mycorrhiza 11:67–81CrossRefGoogle Scholar
  44. Yang S, Pfister DH (2006) Monotropa uniflora plants of eastern Massachusetts form mycorrhizae with a diversity of russulacean fungi. Mycologia 98:535–540PubMedCrossRefGoogle Scholar
  45. Yokoyama J, Fukuda T, Tsukaya H (2005) Molecular identification of the mycorrhizal fungi of the epiparasitic plant Monotropastrum humile var. glaberrimum (Ericaceae). J Plant Res 118:53–56PubMedCrossRefGoogle Scholar
  46. Young BW, Massicotte HB, Tackaberry LE, Baldwin QF, Egger KN (2002) Monotropa uniflora: morphological and molecular assessment of mycorrhizae retrieved from sites in the sub-boreal spruce biogeoclimatic zone in central British Columbia. Mycorrhiza 12:75–82PubMedCrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2008

Authors and Affiliations

  • Akiyoshi Yamada
    • 1
  • Daisei Kitamura
    • 1
  • Masanobu Setoguchi
    • 1
  • Yosuke Matsuda
    • 2
  • Yasushi Hashimoto
    • 3
  • Norihisa Matsushita
    • 4
  • Masaki Fukuda
    • 1
  1. 1.Faculty of AgricultureShinshu UniversityNaganoJapan
  2. 2.Graduate School of BioresourcesMie UniversityTsuJapan
  3. 3.Obihiro University of Agriculture and Veterinary MedicineObihiroJapan
  4. 4.Graduate School of Agriculture and Life ScienceUniversity of TokyoTokyoJapan

Personalised recommendations