Ecological Research

, Volume 23, Issue 5, pp 841–850 | Cite as

Mathematical modeling of colony formation in algal blooms: phenotypic plasticity in cyanobacteria

  • Hiroshi Serizawa
  • Takashi Amemiya
  • Takatoshi Enomoto
  • Axel G. Rossberg
  • Kiminori Itoh
Original Article


In this paper, we analyzed a mathematical model of algal-grazer dynamics, including the effect of colony formation, which is an example of phenotypic plasticity. The model consists of three variables, which correspond to the biomasses of unicellular algae, colonial algae, and herbivorous zooplankton. Among these organisms, colonial algae are the main components of algal blooms. This aquatic system has two stable attractors, which can be identified as a zooplankton-dominated (ZD) state and an algal-dominated (AD) state, respectively. Assuming that the handling time of zooplankton on colonial algae increases with the colonial algae biomass, we discovered that bistability can occur within the model system. The applicability of alternative stable states in algae-grazer dynamics as a framework for explaining the algal blooms in real lake ecosystems, thus, seems to depend on whether the assumption mentioned above is met in natural circumstances.


Bistability Colony size Defensive morphology Handling time Selective feeding 



We are grateful to K. Shibata for permission to use a microscopic photo of Microcystis and the useful discussions. This study is supported by the Global COE Program “Global Eco-Risk Management from Asian View Points” from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. Bontes BM, Verschoor AM, Dionisio Pires LM, van Donk E, Iberings BW (2007) Functional response of Anodonta anatina feeding on a green alga and four strains of cyanobacteria, differing in shape, size and toxicity. Hydrobiologia 584:191–204CrossRefGoogle Scholar
  2. Brookes JD, Ganf GG (2001) Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. J Plankton Res 23:1399–1411CrossRefGoogle Scholar
  3. Burkert U, Hyenstrand P, Drakare S, Blomqvist P (2001) Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquat Ecol 35:9–17CrossRefGoogle Scholar
  4. DeAngelis DL, Bartell SM, Brenkert AL (1989) Effects of nutrient recycling and food-chain length on resilience. Am Nat 134:778–805CrossRefGoogle Scholar
  5. Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12CrossRefGoogle Scholar
  6. Fiałkowska E, Pajdak-Stós A (2002) Dependence of cyanobacteria defense mode on grazer pressure. Aquat Microb Ecol 27:149–157CrossRefGoogle Scholar
  7. Fulton RS 3rd, Paerl HW (1987) Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnol Oceanogr 32:634–644CrossRefGoogle Scholar
  8. Fussmann GF, Ellner SP, Shertzer KW, Hairston NG Jr (2000) Crossing the Hopf bifurcation in a live predator-prey system. Science 290:1358–1360PubMedCrossRefGoogle Scholar
  9. Ghadouani A, Pinel-Alloul B (2002) Phenotypic plasticity in Daphnia pulicaria as an adaptation to high biomass of colonial and filamentous cyanobacteria: experimental evidence. J Plankton Res 24:1047–1056CrossRefGoogle Scholar
  10. Haney JF (1987) Field studies on zooplankton–cyanobacteria interactions. N Z J Mar Freshwater Res 21:467–475Google Scholar
  11. Hessen DO, van Donk E (1993) Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch Hydrobiol 127:129–140Google Scholar
  12. Jakobsen HH, Tang KW (2002) Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits. Aquat Microb Ecol 27:261–273CrossRefGoogle Scholar
  13. Joung S-H, Kim C-J, Ahn C-Y, Jang K-Y, Boo SM, Oh H-M (2006) Simple method for a cell count of the colonial cyanobacterium, Microcystis sp. J Microbiol 44:562–565PubMedGoogle Scholar
  14. Lampert W, Rothhaupt KO, von Elert E (1994) Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnol Oceanogr 39:1543–1550Google Scholar
  15. Lürling M (2003a) Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Ann Limnol Int J Lim 39:85–101CrossRefGoogle Scholar
  16. Lürling M (2003b) The effect of substances from different zooplankton species and fish on the induction of defensive morphology in the green alga Scenedesmus obliquus. J Plankton Res 25:979–989CrossRefGoogle Scholar
  17. Medvinsky AB, Petrovskii SV, Tikhonova IA, Malchow H, Li B-L (2002) Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev 44:311–370CrossRefGoogle Scholar
  18. Oberholster PJ, Botha A-M, Grobbelaar JU (2004) Microcystis aeruginosa: source of toxic microcystins in drinking water. Afr J Biotechnol 3:159–168Google Scholar
  19. Ozawa K, Fujioka H, Muranaka M, Yokoyama A, Katagami Y, Homma T, Ishikawa K, Tsujimura S, Kumagai M, Watanabe MF, Park H-D (2005) Spatial distribution and temporal variation of Microcystis species composition and microcystin concentration in Lake Biwa. Environ Toxicol 20:270–276PubMedCrossRefGoogle Scholar
  20. Petrovskii S, Li B-L, Malchow H (2004) Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol Complex 1:37–47CrossRefGoogle Scholar
  21. Reynolds CS, Oliver RL, Walsby AE (1987) Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. N Z J Mar Freshwater Res 21:379–390CrossRefGoogle Scholar
  22. Scheffer M (1998) Ecology of shallow lakes. Kluwer, DordrechtGoogle Scholar
  23. Sigee DC (2005) Freshwater microbiology. Wiley, West SussexGoogle Scholar
  24. Tang KW (2003) Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of a chemical signal. J Plankton Res 25:831–842CrossRefGoogle Scholar
  25. Tsujimura S, Tsukada H, Nakahara H, Nakajima T, Nishino M (2000) Seasonal variations of Microcystis populations in sediments of Lake Biwa, Japan. Hydrobiologia 434:183–192CrossRefGoogle Scholar
  26. van Holthoon FL, van Beek TA, Lürling M, van Donk E, de Groot A (2003) Colony formation in Scenedesmus: a literature overview and further steps towards the chemical characterisation of the Daphnia kairomone. Hydrobiologia 491:241–254CrossRefGoogle Scholar
  27. Verschoor AM, van der Stap I, Helmsing NR, Lürling M, van Donk E (2004a) Inducible colony formation within the Scenedesmaceae: adaptive responses to infochemicals from two different herbivore taxa. J Phycol 40:808–814CrossRefGoogle Scholar
  28. Verschoor AM, Vos M, van der Stap I (2004b) Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains. Ecol Lett 7:1143–1148CrossRefGoogle Scholar
  29. von Elert E, Franck A (1999) Colony formation in Scenedesmus: grazer-mediated release and chemical features of the infochemical. J Plankton Res 21:789–804CrossRefGoogle Scholar
  30. Vos M, Kooi BW, DeAngwlis DL, Mooij WM (2004a) Inducible defences and the paradox of enrichment. Oikos 105:471–480CrossRefGoogle Scholar
  31. Vos M, Verschoor AM, Kooi BW, Wäckers FL, DeAngelis DL, Mooij WM (2004b) Inducible defenses and trophic structure. Ecology 85:2783–2794CrossRefGoogle Scholar
  32. Watanabe MF, Harada K, Carmichael WW, Fujiki H (1996) Toxic Microcystis. CRC Press, Boca RatonGoogle Scholar
  33. Wilson AE, Sarnelle O, Tillmanns AR (2006) Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnol Oceanogr 51:1915–1924CrossRefGoogle Scholar
  34. Wiltshire K, Boersma M, Meyer B (2003) Grazer-induced changes in the desmid Staurastrum. Hydrobiologia 491:255–260CrossRefGoogle Scholar
  35. Yang Z, Kong F, Shi X, Cao H (2006) Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563:225–230CrossRefGoogle Scholar
  36. Yasumoto K, Nishigami A, Kasai F, Kusumi T, Ooi T (2006) Isolation and absolute configuration determination of aliphatic sulfates as the Daphnia kairomones inducing morphological defense of a phytoplankton. Chem Pharm Bull (Tokyo) 54:271–274CrossRefGoogle Scholar
  37. Yoshinaga I, Hitomi T, Miura A, Shiratani E, Miyazaki T (2006) Cyanobacterium Microcystis bloom in a eutrophicated regulating reservoir. JARQ 40:283–289Google Scholar

Copyright information

© The Ecological Society of Japan 2007

Authors and Affiliations

  • Hiroshi Serizawa
    • 1
  • Takashi Amemiya
    • 1
  • Takatoshi Enomoto
    • 1
  • Axel G. Rossberg
    • 2
  • Kiminori Itoh
    • 1
  1. 1.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  2. 2.Evolution and Ecology ProgramInternational Institute for Applied Systems Analysis (IIASA)LaxenburgAustria

Personalised recommendations