Ecological Research

, Volume 23, Issue 2, pp 259–269 | Cite as

Connectivity compensates for low habitat quality and small patch size in the butterfly Cupido minimus

  • Birgit Binzenhöfer
  • Robert Biedermann
  • Josef Settele
  • Boris Schröder
Original Article


Habitat size, habitat isolation and habitat quality are regarded as the main determinants of butterfly occurrence in fragmented landscapes. To analyze the relationship between the occurrence of the butterfly Cupido minimus and these factors, patch occupancy of the immature stages in patches of its host plant Anthyllis vulneraria was studied in the nature reserve Hohe Wann in Bavaria (Germany). In 2001 and 2002, 82 A. vulneraria patches were surveyed for the presence of C. minimus larvae. The occurrence was largely affected by the size of the food plant patches. In a habitat model that uses multiple logistic regression, the type of management and habitat connectivity are further determinants of species distribution. Internal and temporal validation demonstrate the stability and robustness of the developed habitat models. Additionally, it was proved that the colonization rate of C. minimus was significantly influenced by the distance to the next occupied Anthyllis patch. Concerning long-term survival of (meta-) populations in fragmented landscapes, the results show that lower habitat quality may be compensated by higher connectivity between host plant patches.


Butterfly Cupido minimus Dispersal Habitat model Habitat size Habitat quality Habitat isolation Species persistence 



We thank Zdenek Fric, Ferenc Kassai and Alban Pfeifer for field assistance. Many thanks to two anonymous referees and the editor Yoh Iwasa for their constructive comments on the manuscript. This study is part of the MOSAIK-project, and is financially supported by the German Federal Ministry of Education and Research (BMBF, grant 01LN0007).

Supplementary material

11284_2007_376_MOESM1_ESM.doc (100 kb)
(DOC 100 kb)


  1. Appelt M, Poethke HJ (1997) Metapopulation dynamics in a regional population of the Blue-Winged Grasshopper (Oedipoda caerulescens). J Insect Conserv 1:205–214CrossRefGoogle Scholar
  2. Asher J, Warren M, Fox R, Harding P, Jeffcoate C, Jeffcoate S (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, OxfordGoogle Scholar
  3. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118CrossRefGoogle Scholar
  4. Backhaus K, Erichson B, Plinke W, Weiber R (2000) Multivariate Analysemethoden - Eine anwendungsorientierte Einführung. Springer, BerlinGoogle Scholar
  5. Baguette M, Petit S, Queva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequence for conservation. J Appl Ecol 37:100–108CrossRefGoogle Scholar
  6. Beck JR, Shultz EK (1986) The use of ROC curves in test performance evaluation. Arch Pathol Lab Med 110:13–20PubMedGoogle Scholar
  7. Biedermann R (2000) Metapopulation dynamics of the froghopper Neophilaenus albipennis (F., 1798) (Homoptera, Cercopidae)—what is the minimum viable metapopulation size? J Insect Conserv 4:99–107CrossRefGoogle Scholar
  8. Biedermann R (2003) Body size and area-incidence relationships: is there a general pattern? Global Ecol Biogeogr 12:381–387CrossRefGoogle Scholar
  9. Biedermann R (2004) Patch occupancy of two hemipterans sharing a common host plant. J Biogeogr 31:1179–1184CrossRefGoogle Scholar
  10. Binzenhöfer B, Schröder B, Biedermann R, Strauß B, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths—the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126:247–259CrossRefGoogle Scholar
  11. Blab J, Kudrna O (1982) Hilfsprogramm für Schmetterlinge. Kilda, GrevenGoogle Scholar
  12. Bonn A, Schröder B (2001) Habitat model and their transfer for single and multi species groups: a case study of carabids in an alluvial forest. Ecography 24:483–496CrossRefGoogle Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multi-model inference. Springer, HeidelbergGoogle Scholar
  14. Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Müller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176CrossRefGoogle Scholar
  15. Dennis RLH, Eales HT (1999) Probability of site occupancy in the large heath butterfly Coenonympha tullia determined from geographical and ecological data. Biol Conserv 87:295–301CrossRefGoogle Scholar
  16. Deutscher Wetterdienst (2002) Scholar
  17. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs - Band 2 Tagfalter II. Ulmer, StuttgartGoogle Scholar
  18. Feldmann R, Reinhardt R, Settele J (2000) Bestimmung und Kurzcharakteristik der außeralpinen Tagfalter Deutschlands. In: Settele J, Feldmann R, Reinhardt R (eds) Die Tagfalter Deutschlands - Ein Handbuch für Freilandökologen, Umweltplaner und Naturschützer. Ulmer, Stuttgart, pp 247–369Google Scholar
  19. Fielding AH, Haworth PF (1995) Testing the generality of bird-habitat models. Conserv Biol 9:1466–1481CrossRefGoogle Scholar
  20. Fielding AH, Bell J (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  21. Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716CrossRefGoogle Scholar
  22. Fleishman E, Mac Nally R, Fay JP (2003) Validation tests of predictive models of butterfly occurrence based on environmental variables. Conserv Biol 17:806–817CrossRefGoogle Scholar
  23. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  24. Gutierrez D, Leon-Cortes JL, Menendez R, Wilson RJ, Cowley MJR, Thomas CD (2001) Metapopulations of four lepidopteran herbivores on a single host plant, Lotus corniculatus. Ecology 82:1371–1386Google Scholar
  25. Hanski I (1994a) Patch occupancy dynamics in fragmented landscapes. TREE 9:131–135Google Scholar
  26. Hanski I (1994b) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162CrossRefGoogle Scholar
  27. Hanski I (2001) Spatially realistic theory of metapopulation ecology. Naturwissenschaften 88:372–381PubMedCrossRefGoogle Scholar
  28. Hanski I, Gilpin ME (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42:3–16CrossRefGoogle Scholar
  29. Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol Conserv 68:167–180CrossRefGoogle Scholar
  30. Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75:747–762CrossRefGoogle Scholar
  31. Hanski I, Gilpin ME (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, TorontoGoogle Scholar
  32. Harrison S (1991) Local extinction in a metapopulation context: an empirical evaluation. Biol J Linn Soc 42:73–78CrossRefGoogle Scholar
  33. Heinrich W, Marstaller R, Bährmann R, Perner J, Schäller G (1998) Das Naturschutzgebiet “Leutratal” bei Jena - Struktur- und Sukzessionsforschung in Grasland-Ökosystemen. Naturschutzreport 14, Jena Google Scholar
  34. Hermann G (2000) Methoden der qualitativen Erfassung von Tagfalter. In: Settele J, Feldmann R, Reinhardt R (eds) Die Tagfalter Deutschlands - Ein Handbuch für Freilandökologen, Umweltplaner und Naturschützer. Ulmer, Stuttgart, pp 124–143Google Scholar
  35. Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 63:151–162Google Scholar
  36. Hirsch G, Mann M, Müller O (1998) Naturschutzgroßprojekt Orchideenregion Jena - Muschelkalkhänge im Mittleren Saaletal, Thüringen. Natur und Landschaft 73:334–349Google Scholar
  37. Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New YorkGoogle Scholar
  38. Hovestadt T (1990) Die Bedeutung zufälligen Aussterbens für die Naturschutzplanung. Natur und Landschaft 65:3–8Google Scholar
  39. Kindvall O, Ahlen I (1992) Geometrical factors and metapopulation dynamics of the bush cricket, Metrioptera bicolor Philippi (Orthoptera, Tettigoniidae). Conserv Biol 6:520–529CrossRefGoogle Scholar
  40. Krauss J, Steffan-Dewenter I, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:359–365CrossRefGoogle Scholar
  41. Kudrna O (1986) Aspects of the conservation of butterflies in Europe. Aula, WiesbadenGoogle Scholar
  42. Kuhn W, Kleyer M (1999) A statistical habitat model for the blue winged grasshopper (Oedipoda caerulescens) considering the habitat connectivity. J Nature Conserv 8:207–218Google Scholar
  43. Kuussaari M, Nieminen M, Hanski I (1996) An experimental study of migration in the glanville fritillary Melitaea cinxia. J Anim Ecol 65:791–801CrossRefGoogle Scholar
  44. Leon-Cortes JL, Lennon JJ, Thomas CD (2003) Ecological dynamics of extinct species in empty habitat networks. 2. The role of host plant dynamics. Oikos 102:465–477CrossRefGoogle Scholar
  45. Londo G (1976) The decimal scala for releves of permanent quadrats. Vegetatio 33:1–61CrossRefGoogle Scholar
  46. Manel S, Dias JM, Ormerod SJ (1999) Comparing discriminant analysis, neural networks and logistic regression for predicted species distributions: a case study with a Himalayan river bird. Ecol Model 120:337–347CrossRefGoogle Scholar
  47. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145CrossRefGoogle Scholar
  48. Morrison ML, Marcot BG, Mannan RW (1998) Wild-life habitat relationship—concepts and applications. University of Wisconsin Press, MadisonGoogle Scholar
  49. Nagelkerke NJD (1991) A note on general definition of the coefficient of determination. Biometrika 78: 691–692CrossRefGoogle Scholar
  50. Oberdorfer E (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete. Ulmer, StuttgartGoogle Scholar
  51. Pearce J, Ferrier S (2000a) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:224–245CrossRefGoogle Scholar
  52. Pearce J, Ferrier S (2000b) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol Model 128:127–147CrossRefGoogle Scholar
  53. Peppler-Lisbach C, Schröder B (2004) Predicting the species composition of mat-grass communities (Nardetalia) by logistic regression modelling. J Veg Sci 15:623–634CrossRefGoogle Scholar
  54. Poethke HJ, Gottschalk E, Seitz A (1996) Gefährdungsanalyse einer räumlich strukturierten Population der Westlichen Beißschrecke (Patycleis albopunctata): Ein Beispiel für den Einsatz des Metapopulationskonzeptes im Artenschutz. J Nature Conserv 5:229–242Google Scholar
  55. Pretscher P (1998) Rote Liste der Großschmetterlinge (Macrolepidoptera). In: Binot M, Bless R, Boye P, Gruttke H, Pretscher P (eds) Rote Liste gefährdeter Tiere Deutschlands. Schriftenreihe für Landschaftspflege und Naturschutz 55:87–111Google Scholar
  56. Reich M, Grimm V (1996) Das Metapopulationskonzept in Ökologie und Naturschutz: Eine kritische Bestandsaufnahme. J Nature Conserv 5:123–139Google Scholar
  57. Reineking B, Schröder B (2003) Computer-intensive methods in the analysis of species-habitat relationships. In: Reuter H, Breckling B, Mittwollen A (eds) Gene, Bits und Ökosysteme. GfÖ Arbeitskreis Theorie in der Ökologie 2003, pp 165–182Google Scholar
  58. Reineking B, Schröder B (2006) Constrain to perform: regularization of habitat models. Ecol Model 193:675–690CrossRefGoogle Scholar
  59. Roslin T, Koivunen A (2001) Distribution and abundance of dung beetles in fragmented landscapes. Oecologia 127:69–77CrossRefGoogle Scholar
  60. Schröder B, Richter O (1999) Are habitat models transferable in space and time? J Nature Conserv 8:195–207Google Scholar
  61. Schröder B (2000) Zwischen Naturschutz und theoretischer Ökologie: Modelle zur Habitateignung und räumlicher Populationsdynamik für Heuschrecken im Niedermoor. Landschaftsökologie und Umweltforschung 35. PhD thesis, TU BraunschweigGoogle Scholar
  62. Sterk A, von Duykeren A, Hogervorts J, Verbeek EDM (1982) Demographic studies of Anthyllis vulneraria L. in the Netherlands. II. Population density fluctuations, seed populations, seedling mortality and influence of the biocenosis on demographic features. Acta Botanica Neerlandica 24:315–337Google Scholar
  63. Steyerberg EW, Harrell FEJ, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001) Internal validation of predictive models—efficiency of some procedures for logistic regression analysis. J Clinical Epidemiol 54:774–781CrossRefGoogle Scholar
  64. Thomas CD, Harrison S (1992) Spatial dynamics of a patchily distributed butterfly species. J Anim Ecol 61:437–446CrossRefGoogle Scholar
  65. Thomas CD, Thomas JA, Warren MS (1992) Distribution of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92:563–567CrossRefGoogle Scholar
  66. Thomas CD, Hanski I (1997) Butterfly metapopulations. In: Hanski I, Gilpin ME (eds) Metapopulation biology: ecology, genetics and evolution. Academic Press, San Diego, pp 359–386Google Scholar
  67. Thomas JA, Clarke RT, Elmes GW, Hochberg ME (1998) Population dynamics in the genus Maculinea. In: Dempster JP, McLean IFG (eds) Insect population dynamics: in theory and practise. Chapman & Hall, London, pp 261–290Google Scholar
  68. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc Royal Soc Lond B 268:1791–1796CrossRefGoogle Scholar
  69. Trexler JC, Travis J (1993) Nontraditional regression analyses. Ecology 74:1629–1637CrossRefGoogle Scholar
  70. Verbyla DL, Litvaitis JA (1989) Resampling methods for evaluating classification accuracy of wildlife habitat models. Environ Manage 13:783–787CrossRefGoogle Scholar
  71. Wahlberg N, Moilanen A, Hanski I (1996) Predicting the occurrence of endangered species in fragmented landscapes. Science 273:1536–1538CrossRefGoogle Scholar
  72. Wahlberg N, Klemetti T, Hanski I (2002) Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography 25:224–232CrossRefGoogle Scholar
  73. Weidemann HJ (1995) Tagfalter: beobachten, bestimmen. Naturbuch, AugsburgGoogle Scholar
  74. Whittingham MJ, Stephens PA, Bradbury BR, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189PubMedCrossRefGoogle Scholar
  75. Wilcox BA (1980) Insular ecology and conservation. In: Soule ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates Inc., Sunderland, pp 95–117Google Scholar

Copyright information

© The Ecological Society of Japan 2007

Authors and Affiliations

  1. 1.Bavarian Acadamy for Nature Conservation and Landscape ManagementLaufenGermany
  2. 2.Department of Conservation BiologyUFZ Centre for Environmental Research Leipzig-HalleLeipzigGermany
  3. 3.Landscape Ecology Group, Institute of Biology and Environmental SciencesUniversity of OldenburgOldenburgGermany
  4. 4.Department of Community EcologyUFZ Centre for Environmental Research Leipzig-HalleHalle/SaaleGermany
  5. 5.Institute of GeoecologyUniversity of PotsdamPotsdamGermany

Personalised recommendations