Ecological Research

, 21:476 | Cite as

The association between the phytoplankton, Rhopalosolen species (Chlorophyta; Chlorophyceae), and Anopheles gambiae sensu lato (Diptera: Culicidae) larval abundance in western Kenya

  • Nobuko Tuno
  • Andrew K. Githeko
  • Takeshi Nakayama
  • Noboru Minakawa
  • Masahiro Takagi
  • Guiyun Yan
Note and Comment

Abstract

Algae are important food resources of the larvae of the African malaria vectors, Anopheles gambiae Giles and Anopheles arabiensis Patton (Anopheles gambiae sensu lato), and other zooplankton, but empirical evidence remains meager about the agal flora in ephemeral water bodies. The animals present in natural aquatic habitats in western Kenya were sampled from July to November 2002 to study abiotic and biotic environmental factors determining A. gambiae sl larval abundance. The five highest concentrations of third and fourth instars and pupae (hereafter referred to as old-stage larvae) were sampled in conjunction with the unicellular epizoic green algae, Rhopalosolen species (Chlorophyta; Chlorophyceae). Canonical correspondence analysis revealed that the presence of Rhopalosolen species was the most important determinant of the animal assemblage. The density of old-stage A. gambiae sl larvae was positively correlated with the presence of Rhopalosolen species, but the density of first and second instars of A. gambiae sl was not. The water bodies with Rhopalosolen sp. yielded larger mosquitoes in spite of the higher density of larvae. We demonstrated that the productivity of water bodies in terms of the larvae of malaria vectors can differ in magnitude depending on the agal flora. We discuss phytoplankton as a regulator of mosquito larval populations.

Keywords

Anopheles gambiae Anopheles arabiensis Malaria vector Green algae Phytoplankton 

Notes

Acknowledgements

We thank T. Otieno and M. Ogalo for field assistance. We appreciate the invaluable support of Ms. R. Martin and thank Mr S. Brooks (NHBM) for identifying the Odonata samples. We thank an anonymous editor and two referees for their comments and advice. This work is supported by NIH grant R01 AI 50243 and KAKENHI15770012.

References

  1. Asaeda T, Van BT (1997) Modelling the effects of macrophytes on algal blooming in eutrophic shallow lakes. Ecol Model 104:261–287CrossRefGoogle Scholar
  2. Breman JG (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64[Suppl 1–2]:1–11PubMedGoogle Scholar
  3. Briand JF, Robillot C, Quiblier-Lloberas C, Humbert JF, Coute A, Bernard C (2002) Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Res 36:3183–3192PubMedCrossRefGoogle Scholar
  4. Gauch HG Jr (1982) Multivariate analysis in community structure. Cambridge University Press, CambridgeGoogle Scholar
  5. Gillies MT, De Meillon B (1968) The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). Publication of the South African Institute for Medical Research, no. 54. South African Institute for Medical Research, JohannesburgGoogle Scholar
  6. Gimnig JE, Ombok M, Kamau L, Hawley WA (2001) Characteristics of larval anopheline (Diptera, Culicidae) habitats in Western Kenya. J Med Entomol 38:282–288PubMedGoogle Scholar
  7. Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED (2002) Density-dependent development of Anopheles gambiae (Diptera, Culicidae) larvae in artificial habitats. J Med Entomol 39:162–172PubMedGoogle Scholar
  8. Gonulol A, Obali O (1998) A study on the phytoplankton of Hasan UGURLU Dam Lake (Samsun Turkey). Turk J Biol 22:447–461Google Scholar
  9. Jimenez MRJ, Verreth J, Steenbergen K, Moed J, Machiels M (1995) A dynamic simulation model for the blooming of Oscillatoria agardhii in a monomictic lake. Ecol Model 78:17–24CrossRefGoogle Scholar
  10. Kishimoto N, Ohnishi Y, Somiya I, Ohnishi M (2001) Behavior of Peridinium bipes (Dinophyceae) resting cysts in the Asahi Reservoir. Limnology 2:101–109CrossRefGoogle Scholar
  11. Koenraadt CJM Takken W (2003) Cannibalism and predation among larvae of the Anopheles gambiae complex. Med Vet Entomol 17:61–66CrossRefGoogle Scholar
  12. Komárek J, Fott B (1983) Das Phytoplankton des Süßwassers. Systematik und Biologie. Part 7, 1. Hälfte. Chlorophyceae (Grünalgen), Ordnung Chlorococcales. Schweizerbart’sche, StuttgartGoogle Scholar
  13. Lee JH, Choi JE (2001) Structure and dynamics of phytoplankton communities in the natural wetland, Yunchon-gun, Kyunggi-do. Algae 16:157–163Google Scholar
  14. McCrae AW (1984) Oviposition by African malaria vector mosquitoes. II. Effects of site tone, water type and conspecific immatures on target selection by freshwater Anopheles gambiae Giles, sensu lato. Ann Trop Med Parasitol 78:307–318PubMedGoogle Scholar
  15. Menge BA (2000) Top-down and bottom-up community regulation in marine rocky intertidal habitats. J Exp Mar Biol Ecol 250:257–289PubMedCrossRefGoogle Scholar
  16. Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G (1999) Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am J Trop Med Hyg 61:1010–1016PubMedGoogle Scholar
  17. Muirhead-Thomson RC (1948) Studies on Anopheles gambiae and A. melas in and around Lagos. Bull Entomol Res 38:527CrossRefGoogle Scholar
  18. Nugent G, Fraser W, Sweetapple P (2001) Top down or bottom up? Comparing the impacts of introduced arboreal possums and “terrestrial” ruminants on native forests in New Zealand. Biol Conserv 99:65–79CrossRefGoogle Scholar
  19. Scott TA, Brogdon WG, Collins FH (1993) Identification of single specimen of Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49:520–529PubMedGoogle Scholar
  20. Service MW (1977) Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spraying. J Med Entomol 13:535–545PubMedGoogle Scholar
  21. Service MW (1993) Mosquito ecology. Field sampling methods, 2nd edn. Elsevier, LondonGoogle Scholar
  22. Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 8:271–313CrossRefGoogle Scholar
  23. Ter Braak CJF Šmilauer P (1988) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination. Version 4. Microcomputer Power, Ithaca, N.Y.Google Scholar
  24. Tuno N, Miki K, Minakawa N, Githeko A, Yan G, Takagi M (2004) Diving ability of Anopheles gambiae Giles (Diptera: Culicidae) larvae. J Med Entomol 41:810–812PubMedCrossRefGoogle Scholar
  25. Tuno N, Okeka W, Minakawa N, Takagi M, Yan G (2005) Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in Western Kenya highland forest. J Med Entomol 42:270–277PubMedGoogle Scholar

Copyright information

© The Ecological Society of Japan 2005

Authors and Affiliations

  • Nobuko Tuno
    • 1
  • Andrew K. Githeko
    • 2
  • Takeshi Nakayama
    • 3
  • Noboru Minakawa
    • 1
  • Masahiro Takagi
    • 1
  • Guiyun Yan
    • 4
  1. 1.Department of Vector Ecology and Environment, Institute of Tropical MedicineNagasaki UniversityNagasaki 852-8523Japan
  2. 2.Kisumu Branch of Kenya Medical Research InstituteKisumuKenya
  3. 3.Institute of Biological SciencesUniversity of TsukubaIbaraki 305-8572Japan
  4. 4.Department of Biological SciencesState University of New York at BuffaloBuffaloUSA

Personalised recommendations