Advertisement

Determination of optimum exposure parameters for dentoalveolar structures of the jaws using the CB MercuRay system with cluster signal-to-noise analysis

  • Warangkana Weerawanich
  • Mayumi Shimizu
  • Yohei Takeshita
  • Kazutoshi Okamura
  • Shoko Yoshida
  • Gainer R. Jasa
  • Kazunori Yoshiura
Original Article
  • 9 Downloads

Abstract

Objective

To determine the optimum cone beam computed tomography exposure parameters for specific diagnostic tasks.

Methods

A Teflon phantom attached to a half-mandible in a large container was scanned in dental (D), implant (I), and panoramic (P) modes. An identical phantom in a small container was scanned in D mode. Both were scanned at 60, 80, 100, and 120 kV. We evaluated the image quality of five anatomical structures [dentinoenamel junction (1), lamina dura and periodontal ligament space (2), trabecular pattern (3), cortex–spongy bone junction (4), and pulp chamber and root canal (5)] and analyzed the diagnostic image quality with cluster signal-to-noise analysis. We then evaluated correlations between the two image qualities and calculated the threshold of acceptable diagnostic image quality. Optimum exposure parameters were determined from images with acceptable diagnostic image quality.

Results

For the small container, the optimum exposure parameters were D mode, 80 kV for (1), (3), and (4) and D mode, 100 kV for (5). For the large container, they were D mode, 120 kV for (1), (3), and (5) and D mode, 100 kV for (4). I mode, 120 kV reached the acceptable level for (4). No images reached the acceptable level for (2).

Conclusions

No optimum exposure parameters were identified for the evaluation of the lamina dura and periodontal ligament space. D mode was sufficient for the other structures; however, the tube voltage required for each structure differed. Smaller patients required lower tube voltage. I mode, 120 kV may be used for larger lesions.

Keywords

Cone-beam computed tomography Imaging phantoms Computer-assisted radiographic image interpretation Anatomic landmarks Visual perception 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI under Grant number 15K11074. We thank our colleagues at the Oral and Maxillofacial Radiology department of Kyushu University for kindly agreeing to act as observers in the study. We thank Libby Cone, MD, MA, from Edanz Group Japan (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

Warangkana Weerawanich, Yohei Takeshita, Shoko Yoshida, and Gainer R. Jasa declare that they have no conflict of interest. Mayumi Shimizu, Kazutoshi Okamura, and Kazunori Yoshiura have received Grants from the Japan Society for the Promotion of Science (15K11074).

Human and animal right statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Alkurt MT, Peker I, Usalan G, Altunkaynak B. Clinical evaluation of dose reduction on image quality of panoramic radiographs. J Contemp Dent Pract. 2008;9(5):34–41.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Berkhout WE, Beuger DA, Sanderink GC, van der Stelt PF. The dynamic range of digital radiographic systems: dose reduction or risk of overexposure? Dentomaxillofac Radiol. 2004;33(1):1–5.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Huysmans MC, Hintze H, Wenzel A. Effect of exposure time on in vitro caries diagnosis using the Digora system. Eur J Oral Sci. 1997;105(1):15–20.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kaeppler G, Dietz K, Reinert S. The effect of dose reduction on the detection of anatomical structures on panoramic radiographs. Dentomaxillofac Radiol. 2006;35(4):271–7.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Svenson B, Welander U, Anneroth G, Söderfeldt B. Exposure parameters and their effects on diagnostic accuracy. Oral Surg Oral Med Oral Pathol. 1994;78(4):544–50.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Choi JW. Analysis of the priority of anatomic structures according to the diagnostic task in cone-beam computed tomographic images. Imaging Sci Dent. 2016;46(4):245–9.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    European Commission. Radiation protection No 172. Cone beam CT for dental and maxillofacial radiology (Evidence-based guidelines) [Internet]. Luxembourg: Office for Official Publications of the European Communities; 2012. https://ec.europa.eu/energy/sites/ener/files/documents/172.pdf. Accessed 2 Apr 2018.
  8. 8.
    Lofthag-Hansen S, Thilander-Klang A, Grondahl K. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view. Eur J Radiol. 2011;80(2):483–8.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Pauwels R, Seynaeve L, Henriques JC, de Oliveira-Santos C, Souza PC, Westphalen FH, et al. Optimization of dental CBCT exposures through mAs reduction. Dentomaxillofac Radiol. 2015;44(9):20150108.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tingberg A, Herrmann C, Besjakov J, Rodenacker K, Alman A, Sund P, et al Evaluation of lumbar spine images with added pathology. In: Krupinski EA, editor. Proceeding of SPIE 3981, medical imaging 2000: image perception and performance; 2000 April 14, San Diego, CA, United States. Bellingham: SPIE; 2000. pp. 34–42.Google Scholar
  11. 11.
    Zanca F, Van Ongeval C, Claus F, Jacobs J, Oyen R, Bosmans H. Comparison of visual grading and free-response ROC analyses for assessment of image-processing algorithms in digital mammography. Br J Radiol. 2012;85(1020):e1233–41.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hidalgo Rivas JA, Horner K, Thiruvenkatachari B, Davies J, Theodorakou C. Development of a low-dose protocol for cone beam CT examinations of the anterior maxilla in children. Br J Radiol. 2015;88(1054):20150559.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Mansson LG. Methods for the evaluation of image quality: a review. Radiat Prot Dosimetry. 2000;90(1–2):89–99.CrossRefGoogle Scholar
  14. 14.
    Weerawanich W, Shimizu M, Takeshita Y, Okamura K, Yoshida S, Jasa GR, et al. Evaluation of cone-beam computed tomography diagnostic image quality using cluster signal-to-noise analysis. Oral Radiol. 2018.  https://doi.org/10.1007/s11282-018-0325-0.CrossRefGoogle Scholar
  15. 15.
    Weerawanich W, Shimizu M, Takeshita Y, Okamura K, Yoshida S, Yoshiura K. Cluster signal-to-noise analysis for evaluation of the information content in an image. Dentomaxillofac Radiol. 2018;47(1):20170147.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Araki K, Maki K, Seki K, Sakamaki K, Harata Y, Sakaino R, et al. Characteristics of a newly developed dentomaxillofacial X-ray cone beam CT scanner (CB MercuRay): system configuration and physical properties. Dentomaxillofac Radiol. 2004;33(1):51–9.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Herbert A. ImageJ FindFoci Plugins [Internet]. Brighton: University of Sussex; 2016. http://www.sussex.ac.uk/gdsc/intranet/pdfs/FindFoci.pdf. Accessed 2 Feb 2018.
  18. 18.
    Takeshita Y, Shimizu M, Okamura K, Yoshida S, Weerawanich W, Tokumori K, et al. A new method to evaluate image quality of CBCT images quantitatively without observers. Dentomaxillofac Radiol. 2017;46(3):20160331.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Jasa GR, Shimizu M, Okamura K, Tokumori K, Takeshita Y, Weerawanich W, et al. Effects of exposure parameters and slice thickness on detecting clear and unclear mandibular canals using cone beam CT. Dentomaxillofac Radiol. 2017;46(4):20160315.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Dendy PP, Heaton B. Production of X-rays, interaction of X-rays and gamma rays with matter, and assessment and enhancement of image quality. In: Mould RF, Orton CG, Spaan JAE, Webster JG, editors. Physics for diagnostic radiology. 2nd ed. Bristol: Institute of Physics Publishing; 1999. p. 20–82, 192–218.CrossRefGoogle Scholar
  21. 21.
    Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44(1):20140224.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Librizzi ZT, Tadinada AS, Valiyaparambil JV, Lurie AG, Mallya SM. Cone-beam computed tomography to detect erosions of the temporomandibular joint: effect of field of view and voxel size on diagnostic efficacy and effective dose. Am J Orthod Dentofac Orthop. 2011;140(1):e25–30.CrossRefGoogle Scholar
  23. 23.
    Fakhar HB, Mallahi M, Panjnoush M, Kashani PM. Effect of voxel size and object location in the field of view on detection of bone defects in cone beam computed tomography. J Dent (Tehran). 2016;13(4):279–86.Google Scholar
  24. 24.
    Liedke GS, da Silveira HE, da Silveira HL, Dutra V, de Figueiredo JA. Influence of voxel size in the diagnostic ability of cone beam tomography to evaluate simulated external root resorption. J Endod. 2009;35(2):233–5.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Siegel MJ, Schmidt B, Bradley D, Suess C, Hildebolt C. Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology. 2004;233(2):515–22.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Oliveira ML, Freitas DQ, Ambrosano GM, Haiter-Neto F. Influence of exposure factors on the variability of CBCT voxel values: a phantom study. Dentomaxillofac Radiol. 2014;43(6):20140128.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Baba R, Ueda K, Okabe M. Using a flat-panel detector in high resolution cone beam CT for dental imaging. Dentomaxillofac Radiol. 2004;33(5):285–90.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kanal KM, Chung JH, Wang J, Bhargava P, Kohr JR, Shuman WP, et al. Image noise and liver lesion detection with MDCT: a phantom study. Am J Roentgenol. 2011;197(2):437–41.CrossRefGoogle Scholar

Copyright information

© Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Oral and Maxillofacial Radiology, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
  2. 2.Department of Oral and Maxillofacial Radiology, Faculty of DentistryMahidol UniversityBangkokThailand
  3. 3.Department of Oral and Maxillofacial RadiologyKyushu University HospitalFukuokaJapan
  4. 4.Department of Oral and Maxillofacial RadiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
  5. 5.Section of Image Diagnostics, Department of Diagnostics and General CareFukuoka Dental CollegeFukuokaJapan
  6. 6.Oral Radiology Division, Faculty of OdontologyUniversity of the RepublicMontevideoUruguay

Personalised recommendations