Advertisement

Oral Radiology

, Volume 34, Issue 2, pp 89–104 | Cite as

Clinical guidelines for dental cone-beam computed tomography

  • Takafumi Hayashi
  • Yoshinori Arai
  • Toru Chikui
  • Sachiko Hayashi-Sakai
  • Kazuya Honda
  • Hiroko Indo
  • Taisuke Kawai
  • Kaoru Kobayashi
  • Shumei Murakami
  • Masako Nagasawa
  • Munetaka Naitoh
  • Eiji Nakayama
  • Yutaka Nikkuni
  • Hideyoshi Nishiyama
  • Noriaki Shoji
  • Shigeaki Suenaga
  • Ray Tanaka
  • A Committee on Clinical Practice Guidelines
  • Japanese Society for Oral and Maxillofacial Radiology
Review Article
  • 341 Downloads

Abstract

Dental cone-beam computed tomography (CBCT) received regulatory approval in Japan in 2000 and has been widely used since being approved for coverage by the National Health Insurance system in 2012. This imaging technique allows dental practitioners to observe and diagnose lesions in the dental hard tissue in three dimensions (3D). When performing routine radiography, the examination must be justified, and optimal protection should be provided according to the ALARA (as low as reasonably achievable) principles laid down by the International Commission on Radiological Protection. Dental CBCT should be performed in such a way that the radiation exposure is minimized and the benefits to the patient are maximized. There is a growing demand for widespread access to cutting-edge health care through Japan’s universal health insurance system. However, at the same time, people want our limited human, material, and financial resources to be used efficiently while providing safe health care at the least possible cost to society. Japan’s aging population is expected to reach a peak in 2025, when most of the baby boomer generation will be aged 75 years or older. Comprehensive health care networks are needed to overcome these challenges. Against this background, we hope that this text will contribute to the nation’s oral health by encouraging efficient use of dental CBCT.

Keywords

Cone-beam computed tomography Dentistry Guidelines Japan 

Notes

Compliance with ethical standards

Conflict of interest

Yoshinori Arai has received royalties from J. Morita MFG Corporation (Kyoto, Japan). Takafumi Hayashi, Toru Chikui, Sachiko Hayashi-Sakai, Kazuya Honda, Hiroko Indo, Taisuke Kawai, Shumei Murakami, Masako Nagasawa, Munetaka Naitoh, Eiji Nakayama, Yutaka Nikkuni, Hideyoshi Nishiyama, Noriaki Shoji, Shigeaki Suenaga, and Ray Tanaka declare that they have no conflicts of interest.

Human and animal rights statements

This article does not contain any studies with human or animal subjects performed by the any of the authors.

References

  1. 1.
    Hounsfield G. Computerized transverse axial scanning (tomography) Part 1. Description of system. Br J Radiol. 1973;46:1016–22.PubMedGoogle Scholar
  2. 2.
    Robb RA, Greenleaf JF, Ritman EL, Johnson SA, Sjostrand JD, Herman GT, et al. Three-dimensional visualization of the intact thorax and contents: a technique for cross-sectional reconstruction from multiplanar X-ray views. Comput Biomed Res. 1974;7:395–419.PubMedGoogle Scholar
  3. 3.
    Robb RA. The dynamic spatial reconstructor: an X-ray video-fluoroscopic CT scanner for dynamic volume imaging of moving organs. IEEE Trans Med Imaging. 1982;1:122–33.Google Scholar
  4. 4.
    Toyofuku F, Konishi K, Kanda S. Fluoroscopic computed tomography: an attempt at 3-D imaging of teeth and jaw bones. Oral Radiol. 1986;2:9–13.Google Scholar
  5. 5.
    Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8:1558–64.PubMedGoogle Scholar
  6. 6.
    Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol. 1999;28:245–8.PubMedGoogle Scholar
  7. 7.
    Lennon S, Patel S, Foschi F, Wilson R, Davies J, Mannocci F. Diagnostic accuracy of limited-volume cone-beam computed tomography in the detection of periapical bone loss: 360° scans versus 180° scans. Int Endod J. 2011;44:1118–27.  https://doi.org/10.1111/j.1365-2591.2011.01930.x.PubMedGoogle Scholar
  8. 8.
    Arnheiter C, Scarfe WC, Farman AG. Trends in maxillofacial cone-beam computed tomography usage. Oral Radiol. 2006;22:80–5.  https://doi.org/10.1007/s11282-006-0055-6.Google Scholar
  9. 9.
    Davies J, Johnson B, Drage N. Effective doses from cone beam CT investigation of the jaws. Dentomaxillofac Radiol. 2012;41:30–6.  https://doi.org/10.1259/dmfr/30177908.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Silva MA, Wolf U, Heinicke F, Bumann A, Visser H, Hirsch E. Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J Orthod Dentofacial Orthop. 2008;133:640.e1–5.  https://doi.org/10.1016/j.ajodo.2007.11.019.Google Scholar
  11. 11.
    Loubele M, Jacobs R, Maes F, Denis K, White S, Coudyzer W, et al. Image quality vs radiation dose of four cone beam computed tomography scanners. Dentomaxillofac Radiol. 2008;37:309–18.  https://doi.org/10.1259/dmfr/16770531.PubMedGoogle Scholar
  12. 12.
    Lofthag-Hansen S, Thilander-Klang A, Ekestubbe A, Helmrot E, Gröndahl K. Calculating effective dose on a cone beam computed tomography device: 3D Accuitomo and 3D Accuitomo FPD. Dentomaxillofac Radiol. 2008;37:72–9.  https://doi.org/10.1259/dmfr/60375385.PubMedGoogle Scholar
  13. 13.
    Suomalainen A, Kiljunen T, Käser Y, Peltola J, Kortesniemi M. Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol. 2009;38:367–78.  https://doi.org/10.1259/dmfr/15779208.PubMedGoogle Scholar
  14. 14.
    Hirata T, Inoue K, Shigemori S, Matsuzaki M, Inatomi K. Estimation of exposure dose on MDCT examination—the measurement of organ dose and effective dose by anthropomorphic phantom. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2010;66:901–10 (Japanese).PubMedGoogle Scholar
  15. 15.
    Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, et al. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol. 2012;81:267–71.  https://doi.org/10.1016/j.ejrad.2010.11.028.PubMedGoogle Scholar
  16. 16.
    Rottke D, Patzelt S, Poxleitner P, Schulze D. Effective dose span of ten different cone beam CT devices. Dentomaxillofac Radiol. 2013;42:20120417.  https://doi.org/10.1259/dmfr.20120417.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson DB, et al. Effective dose of dental CBCT—a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol. 2015;44:20140197.  https://doi.org/10.1259/dmfr.20140197.PubMedGoogle Scholar
  18. 18.
    Hirsch E, Wolf U, Heinicke F, Silva MA. Dosimetry of the cone beam computed tomography Veraviewepocs 3D compared with the 3D Accuitomo in different fields of view. Dentomaxillofac Radiol. 2008;37:268–73.  https://doi.org/10.1259/dmfr/23424132.PubMedGoogle Scholar
  19. 19.
    Araki K, Patil S, Endo A, Okano T. Dose indices in dental cone beam CT and correlation with dose-area product. Dentomaxillofac Radiol. 2013;42:20120362.  https://doi.org/10.1259/dmfr.20120362.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Horner K. Cone-beam computed tomography: time for an evidence-based approach. Prim Dent J. 2013;2:22–31.PubMedGoogle Scholar
  21. 21.
    Okano T, Matsuo A, Gotoh K, Yokoi M, Hirukawa A, Okumura S, et al. Comparison of absorbed and effective dose from two dental cone beam computed tomography scanners. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2012;68:216–25 (Japanese).PubMedGoogle Scholar
  22. 22.
    Endo A, Katoh T, Vasudeva SB, Kobayashi I, Okano T. A preliminary study to determine the diagnostic reference level using dose-area product for limited-area cone beam CT. Dentomaxillofac Radiol. 2013;42:20120097.  https://doi.org/10.1259/dmfr.20120097.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ludlow JB, Davies-Ludlow LE, White SC. Patient risk related to common dental radiographic examinations: the impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. J Am Dent Assoc. 2008;139:1237–43.  https://doi.org/10.14219/jada.archive.2008.0339.PubMedGoogle Scholar
  24. 24.
    Patel S, Durack C, Abella F, Shemesh H, Roig M, Lemberg K. Cone beam computed tomography in endodontics—a review. Int Endod J. 2015;48:3–15.  https://doi.org/10.1111/iej.12270.PubMedGoogle Scholar
  25. 25.
    Gurtu A, Aggarwal A, Mohan S, Singhal A, Bansal R, Agnihotri K. CBCT: a revolutionary diagnostic aid for endodontic dilemmas. Miner Stomatol. 2014;63:325–31.Google Scholar
  26. 26.
    American Academy of Oral and Maxillofacial Radiology. Clinical recommendations regarding use of cone beam computed tomography in orthodontics [corrected]. Position statement by the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:238–57.  https://doi.org/10.1016/j.oooo.2013.06.002.Google Scholar
  27. 27.
    Scarfe WC, Li Z, Aboelmaaty W, Scott SA, Farman AG. Maxillofacial cone beam computed tomography: essence, elements and steps to interpretation. Aust Dent J. 2012;57(Suppl 1):46–60.  https://doi.org/10.1111/j.1834-7819.2011.01657.x.PubMedGoogle Scholar
  28. 28.
    Anderson PJ, Yong R, Surman TL, Rajion ZA, Ranjitkar S. Application of three-dimensional computed tomography in craniofacial clinical practice and research. Aust Dent J. 2014;59(Suppl 1):174–85.  https://doi.org/10.1111/adj.12154.PubMedGoogle Scholar
  29. 29.
    Halperin-Sternfeld M, Machtei EE, Balkow C, Horwitz J. Patient movement during extraoral radiographic scanning. Oral Radiol. 2016;32:40–7.  https://doi.org/10.1007/s11282-015-0208-6.Google Scholar
  30. 30.
    Theodorakou C, Walker A, Horner K, Pauwels R, Bogaerts R, Jacobs R, et al. Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms. Br J Radiol. 2012;85:153–60.  https://doi.org/10.1259/bjr/19389412.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Al Najjar A, Colosi D, Dauer LT, Prins R, Patchell G, Branets I, et al. Comparison of adult and child radiation equivalent doses from 2 dental cone-beam computed tomography units. Am J Orthod Dentofacial Orthop. 2013;143:784–92.  https://doi.org/10.1016/j.ajodo.PubMedGoogle Scholar
  32. 32.
    Aps JK. Cone beam computed tomography in paediatric dentistry: overview of recent literature. Eur Arch Paediatr Dent. 2013;14:131–40.  https://doi.org/10.1007/s40368-013-0029-4.PubMedGoogle Scholar
  33. 33.
    Shin HS, Nam KC, Park H, Choi HU, Kim HY, Park CS. Effective doses from panoramic radiography and CBCT (cone beam CT) using dose area product (DAP) in dentistry. Dentomaxillofac Radiol. 2014;43:20130439.  https://doi.org/10.1259/dmfr.20130439.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Hidalgo Rivas JA, Horner K, Thiruvenkatachari B, Davies J, Theodorakou C. Development of a low-dose protocol for cone beam CT examinations of the anterior maxilla in children. Br J Radiol. 2015;88:20150559.  https://doi.org/10.1259/bjr.20150559.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Choi E, Ford NL. Measuring absorbed dose for i-CAT CBCT examinations in child, adolescent and adult phantoms. Dentomaxillofac Radiol. 2015;44:20150018.  https://doi.org/10.1259/dmfr.20150018.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Tanimoto H, Arai Y. The effect of voxel size on image reconstruction in cone-beam computed tomography. Oral Radiol. 2009;25:149–53.  https://doi.org/10.1007/s11282-009-0019-8.Google Scholar
  37. 37.
    Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofac Radiol. 2015;44:20150078.  https://doi.org/10.1259/dmfr.20150078.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Hashem D, Brown JE, Patel S, Mannocci F, Donaldson AN, Watson TF, et al. An in vitro comparison of the accuracy of measurements obtained from high- and low-resolution cone-beam computed tomography scans. J Endod. 2013;39:394–7.  https://doi.org/10.1016/j.joen.2012.11.017.PubMedGoogle Scholar
  39. 39.
    Al-Nuaimi N, Patel S, Foschi F, Mannocci F. The detection of simulated periapical lesions in human dry mandibles with cone beam computed tomography—a dose reduction study. Int Endod J. 2016;49:1095–104.  https://doi.org/10.1111/iej.12565.PubMedGoogle Scholar
  40. 40.
    Alabdeen EHZ. Accuracy of half-exposure time in cone-beam computed tomography imaging for the detection of surface osseous changes in the temporomandibular joint. Oral Radiol. 2017:33;124–32.  https://doi.org/10.1007/s11282-016-0256-6.Google Scholar
  41. 41.
    Watanabe H, Wagatsuma T, Nomura Y, Honda E, Kurabayashi T. Spatial resolution of FineCube, a newly developed cone-beam computed tomography system. Oral Radiol. 2010;26:56–60.  https://doi.org/10.1007/s11282-009-0032-y.Google Scholar
  42. 42.
    Ball RL, Barbizam JV, Cohenca N. Intraoperative endodontic applications of cone-beam computed tomography. J Endod. 2013;39:548–57.  https://doi.org/10.1016/j.joen.2012.11.038.PubMedGoogle Scholar
  43. 43.
    Bechara B, McMahan CA, Noujeim M, Faddoul T, Moore WS, Teixeira FB, et al. Comparison of cone beam CT scans with enhanced photostimulated phosphor plate images in the detection of root fracture of endodontically treated teeth. Dentomaxillofac Radiol. 2013;42:20120404.  https://doi.org/10.1259/dmfr.20120404.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Vizzotto MB, Silveira PF, Arús NA, Montagner F, Gomes BP, da Silveira HE. CBCT for the assessment of second mesiobuccal (MB2) canals in maxillary molar teeth: effect of voxel size and presence of root filling. Int Endod J. 2013;46:870–6.  https://doi.org/10.1111/iej.12075.PubMedGoogle Scholar
  45. 45.
    Jaju PP, Jaju SP. Cone-beam computed tomography: time to move from ALARA to ALADA. Imaging Sci Dent. 2015;45:263–5.  https://doi.org/10.5624/isd.2015.45.4.263.PubMedPubMedCentralGoogle Scholar
  46. 46.
    European Commission. Radiation protection No 172. Cone beam CT for dental and maxillofacial radiology (Evidence based guidelines). Luxembourg: European Commission Directorate-General for Energy; 2012. [Updated 2014 Feb 24]. http://www.sedentexct.eu/files/radiation_protection_172.pdf. Accessed 14 Jan 2016
  47. 47.
    Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol. 2006;35:219–26.PubMedGoogle Scholar
  48. 48.
    Okano T, Harata Y, Sugihara Y, Sakaino R, Tsuchida R, Iwai K, et al. Absorbed and effective doses from cone beam volumetric imaging for implant planning. Dentomaxillofac Radiol. 2009;38:79–85.  https://doi.org/10.1259/dmfr/14769929.PubMedGoogle Scholar
  49. 49.
    Kawai T, Asaumi R, Sato I, Kumazawa Y, Yosue T. Observation of the retromolar foramen and canal of the mandible: a CBCT and macroscopic study. Oral Radiol. 2012;28:10–4.  https://doi.org/10.1007/s11282-011-0074-9.Google Scholar
  50. 50.
    Kawai T, Asaumi R, Sato I, Yoshida S, Yosue T. Classification of the lingual foramina and their bony canals in the median region of the mandible: cone beam computed tomography observations of dry Japanese mandibles. Oral Radiol. 2007;23:42–8.  https://doi.org/10.1007/s11282-007-0064-0.Google Scholar
  51. 51.
    Naitoh M, Nakahara K, Suenaga Y, Gotoh K, Kondo S, Ariji E. Variations of the bony canal in the mandibular ramus using cone-beam computed tomography. Oral Radiol. 2010;26:36–40.  https://doi.org/10.1007/s11282-009-0030-0.Google Scholar
  52. 52.
    Kajan ZD, Salari A. Presence and course of the mandibular incisive canal and presence of the anterior loop in cone beam computed tomography images of an Iranian population. Oral Radiol. 2012;28:55–61.  https://doi.org/10.1007/s11282-012-0084-2.Google Scholar
  53. 53.
    Tanaka R, Hayashi T, Ohshima H, Ida-Yonemochi H, Kenmotsu S, Ike M. CT anatomy of the anterior superior alveolar nerve canal: a macroscopic and microscopic study. Oral Radiol. 2011;27:93–7.  https://doi.org/10.1007/s11282-011-0067-8.Google Scholar
  54. 54.
    Matsumoto K, Araki M, Honda K. Bilateral absence of the mental foramen detected by cone-beam computed tomography. Oral Radiol. 2013;29:198–201.  https://doi.org/10.1007/s11282-012-0117-x.Google Scholar
  55. 55.
    Asaumi R, Kawai T, Sato I, Yoshida S, Yosue T. Three-dimensional observations of the incisive canal and the surrounding bone using cone-beam computed tomography. Oral Radiol. 2010;26:20–8.  https://doi.org/10.1007/s11282-010-0039-4.Google Scholar
  56. 56.
    Salinas-Goodier C, Manchón Á, Rojo R, Coquerelle M, Sammartino G, Prados-Frutos JC. Prevalence and location of accessory foramina in the human mandible. Oral Radiol. 2016;32:72–8.  https://doi.org/10.1007/s11282-015-0212-x.Google Scholar
  57. 57.
    Castro MAA, Vich MOL, Abreu MHG, Mesquita RV. Case–control study of mandibular canal branching and tooth-related inflammatory lesions. Oral Radiol. 2017.  https://doi.org/10.1007/s11282-017-0305-9.Google Scholar
  58. 58.
    American Dental Association Council on Scientific Affairs. The use of cone-beam computed tomography in dentistry: an advisory statement from the American Dental Association Council on Scientific Affairs. J Am Dent Assoc. 2012;143:899–902.Google Scholar
  59. 59.
    Health Protection Agency. Guidance on the safe use of dental cone beam CT (computed tomography) equipment. HPA-CRCE-010. Chilton: Health Protection Agency; 2010.Google Scholar
  60. 60.
    White SC, Scarfe WC, Schulze RK, Lurie AG, Douglass JM, Farman AG, et al. The Image Gently in Dentistry campaign: promotion of responsible use of maxillofacial radiology in dentistry for children. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:257–61.  https://doi.org/10.1016/j.oooo.2014.06.001.PubMedGoogle Scholar
  61. 61.
    Araki M, Hashimoto K, Kawashima S, Matsumoto K, Akiyama Y. Radiographic features of enostosis determined with limited cone-beam computed tomography in comparison with rotational panoramic radiography. Oral Radiol. 2006;22:27–33.  https://doi.org/10.1007/s11282-006-0044-9.Google Scholar
  62. 62.
    Sezgin ÖS, Kayipmaz S. Trifid mandibular condyle. Oral Radiol. 2009;25:146–8.  https://doi.org/10.1007/s11282-009-0023-z.Google Scholar
  63. 63.
    Ono M, Shimizu O, Ueda K, Hashimoto J, Shiratsuchi H, Yonehara Y, et al. A case of true concrescence diagnosed with cone-beam CT and in vivo micro-CT. Oral Radiol. 2010;26:106–9.  https://doi.org/10.1007/s11282-010-0043-8.Google Scholar
  64. 64.
    Metzler P, Zemann W, Lübbers H-T, Guggenberger R, Lüssi A, Obwegeser JA, et al. Bone mineral density measurements performed by cone-beam computed tomography in the bisphosphonate-related osteonecrosis-affected jaw. Oral Radiol. 2012;28:101–8.  https://doi.org/10.1007/s11282-012-0093-1.Google Scholar
  65. 65.
    Alkhader M, Al-Sadhan R, Al-Shawaf R. Cone-beam computed tomography findings of temporomandibular joints with osseous abnormalities. Oral Radiol. 2012;28:82–6.  https://doi.org/10.1007/s11282-012-0094-0.Google Scholar
  66. 66.
    Matsumoto K, Sawada K, Kameoka S, Yonehara Y, Honda K. Cone-beam computed tomography for the diagnosis of mandibular condylar fractures: 11 case reports. Oral Radiol. 2013;29:80–6.  https://doi.org/10.1007/s11282-012-0100-6.Google Scholar
  67. 67.
    Ertas ET, Atýcý MY, Kalabalýk F, Ince O. An unusual case of double idiopathic ramus-related Stafne bone cavity. Oral Radiol. 2013;29:193–7.  https://doi.org/10.1007/s11282-012-0121-1.Google Scholar
  68. 68.
    Chen C-H, Wang C-K, Lin L-M, Huang Y-D, Geist JR, Chen Y-K. Retrospective comparison of the frequency, distribution, and radiographic features of osteosclerosis of the jaws between Taiwanese and American cohorts using cone-beam computed tomography. Oral Radiol. 2014;30:53–63.  https://doi.org/10.1007/s11282-013-0139-z.Google Scholar
  69. 69.
    Mochizuki N, Sugino N, Ninomiya T, Yoshinari N, Udagawa N, Taguchi A. Association of cortical shape of the mandible on panoramic radiographs with mandibular trabecular bone structure in Japanese adults: a cone-beam CT-image analysis. Oral Radiol. 2014;30:160–7.  https://doi.org/10.1007/s11282-013-0155-z.Google Scholar
  70. 70.
    Çaǧayan F, Sümbüllü MA, Akgül HM. Associations between the articular eminence inclination and condylar bone changes, condylar movements, and condyle and fossa shapes. Oral Radiol. 2014;30:84–91.  https://doi.org/10.1007/s11282-013-0149-x.Google Scholar
  71. 71.
    Sekerci AE, Sisman Y. Bilateral anterior Stafne bone defect mimicking radicular cyst: report of a rare case with a review of the literature. Oral Radiol. 2014;30:115–22.  https://doi.org/10.1007/s11282-013-0133-5.Google Scholar
  72. 72.
    Cura N, Hanttash A, Inceoglu B, Orhan K, Mine A, Oncul T. Dentigerous cysts in four quadrants of a nonsyndromic patient: case report and literature review. Oral Radiol. 2015;31:49–58.  https://doi.org/10.1007/s11282-014-0171-7.Google Scholar
  73. 73.
    Demirtas O, Harorli A. Evaluation of the maxillary third molar position and its relationship with the maxillary sinus: a CBCT study. Oral Radiol. 2016;32:173–9.  https://doi.org/10.1007/s11282-015-0228-2.Google Scholar
  74. 74.
    Loncarevic S, Brajkovic D, Vukomanovic-Djurdjevic B, Kanjevac T, Vasovic M. Evaluation of the maxillary third molar position and its relationship with the maxillary sinus: a CBCT study. Oral Radiol. 2016;32:136–42.  https://doi.org/10.1007/s11282-015-0223-7.Google Scholar
  75. 75.
    Kasikcioglu A, Gulsahi A. Relationship between maxillary sinus pathologies and maxillary posterior tooth periapical pathologies. Oral Radiol. 2016;32:180–6.  https://doi.org/10.1007/s11282-015-0231-7.Google Scholar
  76. 76.
    Al-Ekrish AA. Alorainy IA. Apparent discontinuity of the roof of the glenoid fossa on cone-beam computed tomography images of an asymptomatic temporomandibular joint. Oral Radiol. 2016;32:9–13.  https://doi.org/10.1007/s11282-015-0207-7.Google Scholar
  77. 77.
    Pinares J, Urzúa R. Proposed radiographic protocol for central superior mandibular condyle dislocation into the middle cranial fossa: apropos of a case. Oral Radiol. 2016;32:191–4.  https://doi.org/10.1007/s11282-015-0229-1.Google Scholar
  78. 78.
    Çkur B, Bayrakdar IS. No proven correlations between bone quality and degenerative bone changes in the mandibular condyle and articular eminence in temporomandibular joint dysfunction. Oral Radiol. 2016;32:33–9.  https://doi.org/10.1007/s11282-015-0206-8.Google Scholar
  79. 79.
    Avsever H, Gunduz K, Karakoç O, Akyol M, Orhan K. Incidental findings on cone-beam computed tomographic images: paranasal sinus findings and nasal septum variations. Oral Radiol.  https://doi.org/10.1007/s11282-017-0283-y.
  80. 80.
    Liu Y, Xiao Y, Wang H, Hu D, Han X. Clinical and radiological analysis of osteochondromas of the mandible using cone-beam computed tomography. Oral Radiol. 2017;33:8–15.  https://doi.org/10.1007/s11282-016-0238-8.Google Scholar
  81. 81.
    Delantoni A, Lyroudia K, Rafailidis V, Chryssogonidis I. Pseudohypoparathyroidism diagnosed in adulthood: maxillofacial clinical and radiographic findings. Oral Radiol. 2017;33:153–6.  https://doi.org/10.1007/s11282-016-0254-8.Google Scholar
  82. 82.
    Yasa Y, Akgül HM. Comparative cone-beam computed tomography evaluation of the osseous morphology of the temporomandibular joint in temporomandibular dysfunction patients and asymptomatic individuals. Oral Radiol. 2017.  https://doi.org/10.1007/s11282-017-0279-7.Google Scholar
  83. 83.
    Yildirim E, Ciftci ME, Kamak G, Aktan AM. Evaluation of the relationship between maxillary sinus floor position and maxillary sinusitis using cone beam computed tomography. Oral Radiol. 2017;33:16–22.  https://doi.org/10.1007/s11282-016-0241-0.Google Scholar
  84. 84.
    Carrafiello G, Dizonno M, Colli V, Strocchi S, Pozzi Taubert S, Leonardi A, et al. Comparative study of jaws with multislice computed tomography and cone-beam computed tomography. Radiol Med. 2010;115:600–11.  https://doi.org/10.1007/s11547-010-0520-5.PubMedGoogle Scholar
  85. 85.
    Gulsahi A, Ates U, Tirali RE, Cehreli SB. Use of cone-beam computed tomography in diagnosis of an otherwise undetected periapical lesion in an anomalous tooth. Oral Radiol. 2014;30:111–4.  https://doi.org/10.1007/s11282-013-0130-8.Google Scholar
  86. 86.
    Pedemonte E, Cabrera C, Torres A, Jacobs R, Harnisch A, Ramírez V, et al. Root and canal morphology of mandibular premolars using cone-beam computed tomography in a Chilean and Belgian subpopulation: a cross-sectional study. Oral Radiol. 2017.  https://doi.org/10.1007/s11282-017-0297-5.Google Scholar
  87. 87.
    Dillenseger J-P, Gros C-I, Sayeh A, Rasamimanana J, Lawniczak F, Leminor J-M, et al. Image quality evaluation of small FOV and large FOV CBCT devices for oral and maxillofacial radiology. Dentomaxillofac Radiol. 2017;46:20160285.  https://doi.org/10.1259/dmfr.20160285.PubMedGoogle Scholar
  88. 88.
    Elkhateeb SM, Torgersen GR, Arnout EA. Image quality assessment of clinically-applied CBCT protocols using a QAT phantom. Dentomaxillofac Radiol. 2016;44:20150078.  https://doi.org/10.1259/dmfr.20150078.Google Scholar
  89. 89.
    Neves FS, Freitas DQ, Campos PS, Ekestubbe A, Lofthag-Hansen S. Evaluation of cone-beam computed tomography in the diagnosis of vertical root fractures: the influence of imaging modes and root canal materials. J Endod. 2014;40:1530–6.  https://doi.org/10.1016/j.joen.2014.06.012.PubMedGoogle Scholar
  90. 90.
    Goren AD, Prins RD, Dauer LT, Quinn B, Al-Najjar A, Faber RD, et al. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phantom. Dentomaxillofac Radiol. 2013;42:20120260.  https://doi.org/10.1259/dmfr.20120260.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Hidalgo A, Davies J, Horner K, Theodorakou C. Effectiveness of thyroid gland shielding in dental CBCT using a paediatric anthropomorphic phantom. Dentomaxillofac Radiol. 2015;44:20140285.  https://doi.org/10.1259/dmfr.20140285.PubMedGoogle Scholar
  92. 92.
    Lopes IA, Tucunduva RMA, Handem RH, Capelozza ALA. Study of the frequency and location of incidental findings of the maxillofacial region in different fields of view in CBCT scans. Dentomaxillofac Radiol. 2017;46:20160215.  https://doi.org/10.1259/dmfr.20160215.PubMedGoogle Scholar
  93. 93.
    Matzen LH, Wenzel A. Efficacy of CBCT for assessment of impacted mandibular third molars: a review—based on a hierarchical model of evidence. Dentomaxillofac Radiol. 2015;44:20140189.  https://doi.org/10.1259/dmfr.20140189.PubMedGoogle Scholar
  94. 94.
    Şekerci AE, Şişman Y. Comparison between panoramic radiography and cone-beam computed tomography findings for assessment of the relationship between impacted mandibular third molars and the mandibular canal. Oral Radiol. 2014;30:170–8.  https://doi.org/10.1007/s11282-013-0158-9.Google Scholar
  95. 95.
    Neves FS, Pontual AA, Campos PSF, Frazão MAG, de Almeida SM, Ramos-Perez FMM. Radicular dens invaginatus in a mandibular premolar: cone-beam computed tomography findings of a rare anomaly. Oral Radiol. 2013;29:70–3.  https://doi.org/10.1007/s11282-012-0101-5.Google Scholar
  96. 96.
    Różyło TK, Różyło-Kalinowska I, Piskórz M. Cone-beam computed tomography for assessment of dens invaginatus in the Polish population. Oral Radiol. 2017.  https://doi.org/10.1007/s11282-017-0295-7.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Mirmohammadi H, Mahdi L, Partovi P, Khademi A, Shemesh H, Hassan B. Accuracy of cone-beam computed tomography in the detection of a second mesiobuccal root canal in endodontically treated teeth: an ex vivo study. J Endod. 2015;41:1678–81.  https://doi.org/10.1016/j.joen.2015.06.011.PubMedGoogle Scholar
  98. 98.
    Gunduz K, Avsever H, Orhan K, Çelenk P, Ozmen B, Cicek R, et al. Comparison of intraoral radiography and cone-beam computed tomography for the detection of vertical root fractures: an in vitro study. Oral Radiol. 2013;29:6–12.  https://doi.org/10.1007/s11282-012-0098-9.Google Scholar
  99. 99.
    Iikubo M, Kamio T, Hashimoto N, Nishioka T, Wakoh M, Sano T, et al. Comparison of bisecting and parallel intraoral radiography and cone-beam computed tomography for detecting various horizontal angle root fractures. Oral Radiol. 2015;31:173–80.  https://doi.org/10.1007/s11282-015-0201-0.Google Scholar
  100. 100.
    Larheim TA, Abrahamsson A-K, Kristensen M, Arvidsson LZ. CBCT special issue: review article. Temporomandibular joint diagnostics using CBCT. Dentomaxillofac Radiol. 2015;44:20140235.  https://doi.org/10.1259/dmfr.20140235.PubMedGoogle Scholar
  101. 101.
    Librizzi ZT, Tadinada AS, Valiyaparambil JV, Lurie AG, Mallya SM. Cone-beam computed tomography to detect erosions of the temporomandibular joint: effect of field of view and voxel size on diagnostic efficacy and effective dose. Am J Orthod Dentofacial Orthop. 2011;140:e25–e30.  https://doi.org/10.1016/j.ajodo.2011.03.012.PubMedGoogle Scholar
  102. 102.
    Suter VG, Sendi P, Reichart PA, Bornstein MM. The nasopalatine duct cyst: an analysis of the relation between clinical symptoms, cyst dimensions, and involvement of neighboring anatomical structures using cone beam computed tomography. J Oral Maxillofac Surg. 2011;69:2595–603.  https://doi.org/10.1016/j.joms.2010.11.032.PubMedGoogle Scholar
  103. 103.
    Dawood A, Brown J, Sauret-Jackson V, Purkayastha S. Optimization of cone beam CT exposure for pre-surgical evaluation of the implant site. Dentomaxillofac Radiol. 2012;41:70–4.  https://doi.org/10.1259/dmfr/16421849.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29 Suppl:55–77.  https://doi.org/10.11607/jomi.2014suppl.g1.4.PubMedGoogle Scholar
  105. 105.
    Gupta J, Ali SP. Cone beam computed tomography in oral implants. Natl J Maxillofac Surg. 2013;4:2–6.  https://doi.org/10.4103/0975-5950.117811.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Orhan K, Icen M, Aksoy S, Ozan O, Berberoglu A. Cone-beam CT evaluation of morphology, location, and course of mandibular incisive canal: considerations for implant treatment. Oral Radiol. 2014;30:64–75.  https://doi.org/10.1007/s11282-013-0138-0.Google Scholar
  107. 107.
    Landin M, Jadhav A, Yadav S, Tadinada A. A comparative study between currently used methods and small volume-cone beam tomography for surgical placement of mini implants. Angle Orthod. 2015;85:446–53.  https://doi.org/10.2319/042214-298.1.PubMedGoogle Scholar
  108. 108.
    Ambu E, Fimiani M, Vigna M, Grandini S. Use of bioactive materials and limited FOV CBCT in the treatment of a replanted permanent tooth affected by inflammatory external root resorption: a case report. Eur J Paediatr Dent. 2017;18:51–5.  https://doi.org/10.23804/ejpd.2017.18.01.11.PubMedGoogle Scholar
  109. 109.
    Honda K, Larheim TA, Johannessen S, Arai Y, Shinoda K, Westesson PL. Ortho cubic super-high resolution computed tomography: a new radiographic technique with application to the temporomandibular joint. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:239–43.PubMedGoogle Scholar
  110. 110.
    Honda K, Matumoto K, Kashima M, Takano Y, Kawashima S, Arai Y. Single air contrast arthrography for temporomandibular joint disorder using limited cone beam computed tomography for dental use. Dentomaxillofac Radiol. 2004;33:271–3.  https://doi.org/10.1259/dmfr/50972902.PubMedGoogle Scholar
  111. 111.
    Dalessandri D, Laffranchi L, Tonni I, Zotti F, Piancino MG, Paganelli C, et al. Advantages of cone beam computed tomography (CBCT) in the orthodontic treatment planning of cleidocranial dysplasia patients: a case report. Head Face Med. 2011;7:6.  https://doi.org/10.1186/1746-160X-7-6.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Kapila SD, Nervina JM. CBCT special issue: review article. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofac Radiol. 2015;44:0140282.  https://doi.org/10.1259/dmfr.20140282.Google Scholar
  113. 113.
    Suomalainen A, Åberg T, Rautio J, Hurmerinta K. Cone beam computed tomography in the assessment of alveolar bone grafting in children with unilateral cleft lip and palate. Eur J Orthod. 2014;36:603–11.  https://doi.org/10.1093/ejo/cjt105.PubMedGoogle Scholar
  114. 114.
    Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol. 2004;33:291–4.  https://doi.org/10.1259/dmfr/25500850.PubMedGoogle Scholar
  115. 115.
    Kajan ZD, Asli HN, Taramsari M, Chai SMF, Hemmaty YB. Comparison of height and width measurements of mandibular bone in various head orientations using cone beam computed tomography: an experimental in vitro study. Oral Radiol. 2015;31:28–35.  https://doi.org/10.1007/s11282-014-0179-z.Google Scholar
  116. 116.
    Bohner LOL, Tortamano P, Marotti J. Accuracy of linear measurements around dental implants by means of cone beam computed tomography with different exposure parameters. Dentomaxillofac Radiol. 2017;46:20160377.  https://doi.org/10.1259/dmfr.20160377.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Ghoneima A, Imburgia A, Halum S, Van Dis M, Kula K. Three-dimensional airway analysis of trumpet players vs. non-trumpet players. Oral Radiol. 2015;31:105–13.  https://doi.org/10.1007/s11282-014-0187-z.Google Scholar
  118. 118.
    Bin F, Meng Y, Meng J, Hu W. Comparison of velum morphologies using cephalometry and dental CBCT. Oral Radiol. 2016;32:1–8.  https://doi.org/10.1007/s11282-015-0200-1.Google Scholar
  119. 119.
    Alsufyani NA, Noga ML, Witmans M, Major PW. Upper airway imaging in sleep-disordered breathing: role of cone-beam computed tomography. Oral Radiol. 2017;33:161–9.  https://doi.org/10.1007/s11282-017-0280-1.Google Scholar
  120. 120.
    Sutthiprapaporn P, Tanimoto K, Ohtsuka M, Nagasaki T, Konishi M, Iida Y, et al. Improved inspection of the lateral pharyngeal recess using cone-beam computed tomography in the upright position. Oral Radiol. 2008;24:71–5.  https://doi.org/10.1007/s11282-008-0078-2.Google Scholar
  121. 121.
    International Commission on Radiological Protection. Radiological Protection in Medicine. ICRP Publication 105. Ann ICRP. 2007;37(6).Google Scholar
  122. 122.
    Berrington de González A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363:345–51.PubMedGoogle Scholar
  123. 123.
    Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.PubMedPubMedCentralGoogle Scholar
  124. 124.
    OECD. Health at a Glance 2015: OECD indicators. Paris: OECD Publishing; 2015.Google Scholar
  125. 125.
    Sezgin ÖS, Kayipmaz S, Yasar D, Yilmaz AB, Ozturk MH. Comparative dosimetry of dental cone beam computed tomography, panoramic radiography, and multislice computed tomography. Oral Radiol. 2008;28:32–7.  https://doi.org/10.1007/s11282-011-0078-5.Google Scholar
  126. 126.
    Kanzaki T, Takahashi Y, Yarita K. Absorbed dose to the eye lens during dental radiography. Oral Radiol. 2017;33:246–50.  https://doi.org/10.1007/s11282-016-0267-3.Google Scholar
  127. 127.
    Neves FS, Souza TC, de-Azevedo-Vaz SL, Campos PSF, Bóscolo FN. Influence of cone-beam computed tomography milliamperage settings on image quality of the mandibular third molar region. Oral Radiol. 2014;30:27–31.  https://doi.org/10.1007/s11282-013-0132-6.Google Scholar

Copyright information

© Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Takafumi Hayashi
    • 1
  • Yoshinori Arai
    • 2
  • Toru Chikui
    • 3
  • Sachiko Hayashi-Sakai
    • 1
  • Kazuya Honda
    • 2
  • Hiroko Indo
    • 4
  • Taisuke Kawai
    • 5
  • Kaoru Kobayashi
    • 6
  • Shumei Murakami
    • 7
  • Masako Nagasawa
    • 8
  • Munetaka Naitoh
    • 9
  • Eiji Nakayama
    • 10
  • Yutaka Nikkuni
    • 1
  • Hideyoshi Nishiyama
    • 1
  • Noriaki Shoji
    • 11
  • Shigeaki Suenaga
    • 4
  • Ray Tanaka
    • 12
  • A Committee on Clinical Practice Guidelines
  • Japanese Society for Oral and Maxillofacial Radiology
  1. 1.Division of Oral and Maxillofacial RadiologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  2. 2.Department of Oral and Maxillofacial RadiologyNihon University School of DentistryTokyoJapan
  3. 3.Department of Oral and Maxillofacial Radiology, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
  4. 4.Division of Oncology, Department of Maxillofacial RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
  5. 5.Department of Oral and Maxillofacial RadiologySchool of Life Dentistry at Tokyo, Nippon Dental UniversityTokyoJapan
  6. 6.Department of Oral and Maxillofacial Radiology and DiagnosisTsurumi University School of Dental MedicineYokohamaJapan
  7. 7.Department of Oral and Maxillofacial RadiologyOsaka University Graduate School of DentistrySuitaJapan
  8. 8.Division of Bio-ProsthodonticsNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  9. 9.Department of Oral and Maxillofacial Radiology, School of DentistryAichi-Gakuin UniversityNagoyaJapan
  10. 10.Department of Oral and Maxillofacial RadiologySchool of Dentistry, Health Sciences University of HokkaidoHokkaidoJapan
  11. 11.Division of Oral Diagnosis, Department of Oral Medicine and SurgeryTohoku University Graduate School of DentistrySendaiJapan
  12. 12.Oral and Maxillofacial Radiology, Applied Oral Sciences, Faculty of DentistryThe University of Hong Kong, Prince Philip Dental HospitalHong KongChina

Personalised recommendations