Advertisement

Oral Radiology

, Volume 34, Issue 3, pp 229–236 | Cite as

Case–control study of mandibular canal branching and tooth-related inflammatory lesions

  • Mauricio Augusto Aquino Castro
  • Manuel Oscar Lagravere Vich
  • Mauro Henrique Guimaraes Abreu
  • Ricardo Alves Mesquita
Original Article

Abstract

Objectives

Morphological variations of mandibular canals increase the risk of neurovascular damage and bleeding during surgical procedures by decreasing the predictability of the inferior alveolar neurovascular bundle location. To improve the predictability with such variations, the present study aimed to verify the possibility of a relationship between mandibular canal branches (MCBs) and tooth-related inflammatory lesions, using trough cone-beam computed tomography (CBCT) examinations.

Methods

The sample comprised 150 age and sex-matched examinations (50 cases and 100 controls) from two databases. The CBCT examinations were grouped by the presence of MCBs starting in the mandibular body regions as the outcome variable. Tooth-related inflammatory lesions and measurements of gray levels in the posterior region of the alveolar ridge were assessed in both groups. A multiple logistic regression analysis was applied to verify the relationships between MCBs and independent variables (p < 0.05).

Results

Occurrence of tooth-related inflammatory lesions increased the risk of MCBs in the mandibular body regions (p < 0.001; OR 11.640; 95% CI 4.327–31.311). High-contrast images had a weaker association with MCBs (p = 0.002; OR 1.002; 95% CI 1.002–1.003). The most frequent tooth-related inflammatory lesions in both groups were endodontic (34 lesions; 45.94% of the total lesions). Most of the tooth-related inflammatory lesions related to MCBs were endodontic (20 cases) and combined endodontic and periodontal inflammation (20 cases).

Conclusions

An association was observed between MCBs in the mandibular body regions and tooth-related inflammatory lesions. Inflammatory lesions of endodontic origin are most often associated with MCBs.

Keywords

Cone-beam computed tomography Mandibular canal Oral pathology 

Notes

Compliance with ethical standards

Conflict of interest

Mauricio Augusto Aquino Castro, Manuel Oscar Lagravere Vich, Mauro Henrique Guimaraes Abreu, and Ricardo Alves Mesquita declare that they have no conflict of interest.

Human rights statements and informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. Informed consent was obtained from all patients for being included in the study.

References

  1. 1.
    Corbella S, Taschieri S, Mannocci F, Rosen E, Tsesis I, Del Fabbro M. Inferior alveolar nerve block for the treatment of teeth presenting with irreversible pulpitis: a systematic review of the literature and meta-analysis. Quintessence Int. 2017;48:69–82.PubMedGoogle Scholar
  2. 2.
    Fowler S, Reader A, Beck M. Incidence of missed inferior alveolar nerve blocks in vital asymptomatic subjects and in patients with symptomatic irreversible pulpitis. J Endod. 2015;41:637–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Monteiro MR, Groppo FC, Haiter-Neto F, Volpato MC, Almeida JF. 4% articaine buccal infiltration versus 2% lidocaine inferior alveolar nerve block for emergency root canal treatment in mandibular molars with irreversible pulpits: a randomized clinical study. Int Endod J. 2015;48:145–52.CrossRefPubMedGoogle Scholar
  4. 4.
    Li C, Yang X, Ma X, Li L, Shi Z. Preoperative oral nonsteroidal anti-inflammatory drugs for the success of the inferior alveolar nerve block in irreversible pulpitis treatment: a systematic review and meta-analysis based on randomized controlled trials. Quintessence Int. 2012;43:209–19.PubMedGoogle Scholar
  5. 5.
    Kanaa MD, Whitworth JM, Meechan JG. A prospective randomized trial of different supplementary local anesthetic techniques after failure of inferior alveolar nerve block in patients with irreversible pulpitis in mandibular teeth. J Endod. 2012;38:421–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Potocnik I, Bajrović F. Failure of inferior alveolar nerve block in endodontics. Endod Dent Traumatol. 1999;15:247–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Rodella LF, Buffoli B, Labanca M, Rezzani R. A review of the mandibular and maxillary nerve supplies and their clinical relevance. Arch Oral Biol. 2012;57:323–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Meechan JG. Supplementary routes to local anaesthesia. Int Endod J. 2002;35:885–96.CrossRefPubMedGoogle Scholar
  9. 9.
    Grover PS, Lorton L. Bifid mandibular nerve as a possible cause of inadequate anesthesia in the mandible. J Oral Maxillofac Surg. 1983;41:177–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Nortjé CJ, Farman AG, Grotepass FW. Variations in the normal anatomy of the inferior dental (mandibular) canal: a retrospective study of panoramic radiographs from 3612 routine dental patients. Br J Oral Surg. 1977;15:55–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Chávez-Lomeli ME, Mansilla Lory J, Pompa JA, Kjaer I. The human mandibular canal arises from three separate canals innervating different tooth groups. J Dent Res. 1996;75:1540–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Buric N, Jovanovic G, Radovanovic Z, Buric M, Tijanic M. Radiographic enlargement of mandibular canal as first feature of non-Hodgkin’s lymphoma. Dentomaxillofac Radiol. 2010;39:383–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sheikh S, Pallagatti S, Gupta D. Bilateral neurogenic masses: a diagnostic challenge. J Can Dent Assoc. 2010;76:a112.PubMedGoogle Scholar
  14. 14.
    Weckx A, Agbaje JO, Sun Y, Jacobs R, Politis C. Visualization techniques of the inferior alveolar nerve (IAN): a narrative review. Surg Radiol Anat. 2016;38:55–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Juodzbalys G, Wang HL, Sabalys G. Injury of the inferior alveolar nerve during implant placement: a literature review. J Oral Maxillofac Res. 2011;2:e1.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Tay ABG, Zuniga JR. Clinical characteristics of trigeminal nerve injury referrals to a university centre. Int J Oral Maxillofac Surg. 2007;36:922–7.CrossRefPubMedGoogle Scholar
  17. 17.
    González-Santana H, Peñarrocha-Diago M, Guarinos-Carbó J, Balaguer-Martínez J. Pain and inflammation in 41 patients following the placement of 131 dental implants. Med Oral Patol Oral Cir Bucal. 2005;10:258–63.PubMedGoogle Scholar
  18. 18.
    Hori M, Sato T, Kaneko K, Okaue M, Matsumoto M, Sato H, et al. Neurosensory function and implant survival rate following implant placement with nerve transpositioning: a case study. J Oral Sci. 2001;43:139–44.CrossRefPubMedGoogle Scholar
  19. 19.
    Mizbah K, Gerlach N, Maal TJ, Bergé SJ, Meijer GJ. The clinical relevance of bifid and trifid mandibular canals. Oral Maxillofac Surg. 2012;16:147–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Fukami K, Shiozaki K, Mishima A, Kuribayashi A, Hamada Y, Kobayashi K. Bifid mandibular canal: confirmation of limited cone beam CT findings by gross anatomical and histological investigations. Dentomaxillofac Radiol. 2012;41:460–5.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ikeda K, Ho KC, Nowicki BH, Haughton VM. Multiplanar MR and anatomic study of the mandibular canal. AJNR Am J Neuroradiol. 1996;17:579–84.PubMedGoogle Scholar
  22. 22.
    Carter RB, Keen EN. The intramandibular course of the inferior alveolar nerve. J Anat. 1971;108:433–40.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Nortjé CJ, Farman AG, de JJV Joubert. The radiographic appearance of the inferior dental canal: an additional variation. Br J Oral Surg. 1977;15:171–2.CrossRefPubMedGoogle Scholar
  24. 24.
    Langlais RP, Broadus R, Glass BJ. Bifid mandibular canals in panoramic radiographs. J Am Dent Assoc. 1985;110:923–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Sanchis JM, Peñarrocha M, Soler F. Bifid mandibular canal. J Oral Maxillofac Surg. 2003;61:422–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim TS, Caruso JM, Christensen H, Torabinejad M. A comparison of cone-beam computed tomography and direct measurement in the examination of the mandibular canal and adjacent structures. J Endod. 2010;36:1191–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Kuribayashi A, Watanabe H, Imaizumi A, Tantanapornkul W, Katakami K, Kurabayashi T. Bifid mandibular canals: cone beam computed tomography evaluation. Dentomaxillofac Radiol. 2010;39:235–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Juodzbalys G, Wang H, Sabalys G. Anatomy of mandibular vital structures. Part I: mandibular canal and inferior alveolar neurovascular bundle in relation with dental implantology. J Oral Maxillofac Res. 2010;1:e2.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Simonton JD, Azevedo B, Schindler WG, Hargreaves KM. Age- and gender-related differences in the position of the inferior alveolar nerve by using cone beam computed tomography. J Endod. 2009;35:944–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Naitoh M, Hiraiwa Y, Aimiya H, Ariji E. Observation of bifid mandibular canal using cone-beam computerized tomography. Int J Oral Maxillofac Implants. 2009;24:155–9.PubMedGoogle Scholar
  31. 31.
    Claeys V, Wackens G. Bifid mandibular canal: literature review and case report. Dentomaxillofac Radiol. 2005;34:55–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Rouas P, Nancy J, Bar D. Identification of double mandibular canals: literature review and three case reports with CT scans and cone beam CT. Dentomaxillofac Radiol. 2007;36:34–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Wadhwani P, Mathur RM, Kohli M, Sahu R. Mandibular canal variant: a case report. J Oral Pathol Med. 2008;37:122–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Manikandhan R, Mathew PC, Naveenkumar J, Anantanarayanan P. A rare variation in the course of the inferior alveolar nerve. Int J Oral Maxillofac Surg. 2010;39:185–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Oliveira-Santos C, Souza PH, de Azambuja Berti-Couto S, Stinkens L, Moyaert K, Rubira-Bullen IR, et al. Assessment of variations of the mandibular canal through cone beam computed tomography. Clin Oral Investig. 2012;16:387–93.CrossRefPubMedGoogle Scholar
  36. 36.
    Neves FS, Torres MG, Oliveira C, Campos PS, Crusoé-Rebello I. Lingual accessory mental foramen: a report of an extremely rare anatomical variation. J Oral Sci. 2010;52:501–3.CrossRefPubMedGoogle Scholar
  37. 37.
    Castro MAA, Lagravere-Vich MO, Amaral TMP, Abreu MHG, Mesquita RA. Classifications of mandibular canal branching: a review of literature. World J Radiol. 2015;7:531–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Miller CS, Nummikoski PV, Barnett DA, Langlais RP. Cross-sectional tomography. A diagnostic technique for determining the buccolingual relationship of impacted mandibular third molars and the inferior alveolar neurovascular bundle. Oral Surg Oral Med Oral Pathol. 1990;70:791–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Ritter L, Mischkowski RA, Neugebauer J, Dreiseidler T, Scheer M, Keeve E, et al. The influence of body mass index, age, implants, and dental restorations on image quality of cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:e108–e16.CrossRefPubMedGoogle Scholar
  40. 40.
    Kaya S, Yavuz I, Uysal I, Akkus Z. Measuring bone density in healing periapical lesions by using cone beam computed tomography: a clinical investigation. J Endod. 2012;38:28–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Mah P, Reeves TE, McDavid WD. Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol. 2010;39:323–35.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lee JM, Song JY, Baek M, Jung HY, Kang H, Han IB, et al. Interleukin-1β induces angiogenesis and innervation in human intervertebral disc degeneration. J Orthop Res. 2011;29:265–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Holland GR. Periapical neural changes after pulpectomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80:726–34.CrossRefPubMedGoogle Scholar
  44. 44.
    Lin L, Langeland K. Innervation of the inflammatory periapical lesions. Oral Surg Oral Med Oral Pathol. 1981;51:535–43.CrossRefPubMedGoogle Scholar
  45. 45.
    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMedGoogle Scholar
  46. 46.
    Harvey BJ, Lang TA. Hypothesis testing, study power, and sample size. Chest. 2010;138:734–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Hosmer DW, Lemeshow S. Logistic regression for matched case-control studies. In: Cressie NAC, Fisher NI, Johnstone IM, Kadane JB, Scott DW, Silverman BW et al, editors. Applied logistic regression. 2nd ed. New York: Wiley; 2004. pp. 223–52.Google Scholar
  48. 48.
    Yamada T, Ishihama K, Yasuda K, Hasumi-Nakayama Y, Ito K, Yamaoka M, et al. Inferior alveolar nerve canal and branches detected with dental cone beam computed tomography in lower third molar region. J Oral Maxillofac Surg. 2011;69:1278–82.CrossRefPubMedGoogle Scholar
  49. 49.
    Kieser J, Kieser D, Hauman T. The course and distribution of the inferior alveolar nerve in the edentulous mandible. J Craniofac Surg. 2005;16:6–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature. 1987;330:658–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Oshima M, Miyake M, Takeda M, Kamijima M, Sakamoto T. Staphylococcal enterotoxin B causes proliferation of sensory C-fibers and subsequent enhancement of neurogenic inflammation in rat skin. J Infect Dis. 2011;203:862–9.CrossRefGoogle Scholar
  52. 52.
    Kimberly CL, Byers MR. Inflammation of rat molar pulp and periodontium causes increased calcitonin gene-related peptide and axonal sprouting. Anat Rec. 1988;222:289–300.CrossRefPubMedGoogle Scholar
  53. 53.
    Henry MA, Westrum LE, Bothwell M, Johnson LR. Nerve growth factor receptor (p75)-immunoreactivity in the normal adult feline trigeminal system and following retrogasserian rhizotomy. J Comp Neurol. 1993;335:425–36.CrossRefPubMedGoogle Scholar
  54. 54.
    Awad MA. Most radiolucent lesions of the jaw are classified as granuloma and cysts in a U.S. population. J Evid Based Dent Pract. 2013;13:70–1.CrossRefPubMedGoogle Scholar
  55. 55.
    Fonseca-Silva T, Santos CC, Alves LR, Dias LC, Brito M Jr, De Paula AM, et al. Detection and quantification of mast cell, vascular endothelial growth factor and microvessel density in human inflammatory periapical cysts and granulomas. Int Endod J. 2012;45:859–64.CrossRefPubMedGoogle Scholar
  56. 56.
    Graunaite I, Lodiene G, Maciulskiene V. Pathogenesis of apical periodontitis: a literature review. J Oral Maxillofac Res. 2011;2:e1.Google Scholar
  57. 57.
    Tyndall DA, Price JB, Tetradis S, Ganz SC, Hildebolt C, Scarfe WC, et al. Position statement of the american academy of oral and maxillofacial radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:817–26.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society for Oral and Maxillofacial Radiology and Springer Japan KK 2017

Authors and Affiliations

  • Mauricio Augusto Aquino Castro
    • 1
  • Manuel Oscar Lagravere Vich
    • 2
  • Mauro Henrique Guimaraes Abreu
    • 3
  • Ricardo Alves Mesquita
    • 4
  1. 1.Department of DentistryFederal University of Juiz de ForaGovernador ValadaresBrazil
  2. 2.Graduate Orthodontic ProgramUniversity of AlbertaEdmontonCanada
  3. 3.Department of Community and Preventive DentistryFederal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Department of Oral Surgery and PathologyFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations