Advertisement

Oral Radiology

, Volume 34, Issue 3, pp 199–207 | Cite as

Dense cancellous bone as evidenced by a high HU value is predictive of late implant failure: a preliminary study

  • Ikuya Miyamoto
  • Tetsu Takahashi
  • Tatsurou Tanaka
  • Bunichi Hirayama
  • Kenko Tanaka
  • Toru Yamazaki
  • Yasuhiro Morimoto
  • Izumi Yoshioka
Original Article
  • 99 Downloads

Abstract

Objectives

The mechanism of late implant failure is unclear. This study examined the association between sclerosing cancellous bone images and the risk of late implant failures using multi-detector row computed tomography (CT) imaging data.

Methods

We performed a case–control study. The study group consisted of consecutive patients with implant failures treated at Kyushu Dental University between 2001 and 2016. CT data for late failure of 36 implants in 16 patients were available. The study cohort consisted of 16 patients with 36 late failed implants and 28 patients with 113 successful implants.

Results

The mean survival rate was 6.9 months for early implant failure, 76.6 months for late failure with marginal bone resorption, inflammation symptoms, and so-called peri-implantitis, and 95.0 months for late failure caused by implant fracture. The mean HU value for cases in the control group was 507 compared with 1231 for cases with late failure implants. Logistic regression was used for analysis. There were signs of high radiodensity of peri-implant cancellous bone when comparing adjusted radiodensity per 100 HU using CT data (OR 2.35; 95% CI 1.73–3.20; p < 0.001).

Conclusions

Within the limits of our study, the presence of high radiodensity and cancellous bone consolidation on imaging may be related to risk factors for late implant failure. Therefore, CT images of the host cancellous bone status for observation of visible sclerosis could be a useful diagnostic indicator for late implant failure.

Keywords

Late implant failure Cancellous bone Bone sclerosing image 

Notes

Acknowledgements

The authors would like to thank Chief Prof. Kazuhiro Tominaga (Department of Science of Physical Functions, Division of Oral and Maxillofacial Surgery, Kyushu Dental University) for his support.

Compliance with ethical standards

Conflict of interest

Ikuya Miyamoto, Tetsu Takahashi, Tatsurou Tanaka, Bunichi Hirayama, Kenko Tanaka, Toru Yamazaki, Yasuhiro Morimoto, and Izumi Yoshioka declare that they have no conflict of interest.

Human rights statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Ethical statement

The Ethical Committee of Kyushu Dental University approved the study protocol (Approval Number: 2013 12-38). The STROBE guideline was followed in this investigation.

References

  1. 1.
    Adell R, Lekholm U, Rockler B, Brånemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981;10:387–416.CrossRefPubMedGoogle Scholar
  2. 2.
    Simonis P, Dufour T, Tenenbaum H. Long-term implant survival and success: a 10- to 16-year follow-up of non-submerged dental implants. Clin Oral Implants Res. 2010;21:772–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Al-Nawas B, Kämmerer PW, Morbach T, Ladwein C, Wegener J, Wagner W. Ten-year retrospective follow-up study of the TiOblast dental implant. Clin Implant Dent Relat Res. 2012;14:127–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Jemt T, Olsson M, Franke SV. Incidence of first implant failure: a retroprospective study of 27 years of implant operations at one specialist clinic. Clin Implant Dent Relat Res. 2015;17:e501–10.CrossRefPubMedGoogle Scholar
  5. 5.
    Koka S, Zarb G. On osseointegration: the healing adaptation principle in the context of osseosufficiency, osseoseparation, and dental implant failure. Int J Prosthodont. 2012;25:48–52.PubMedGoogle Scholar
  6. 6.
    Chrcanovic BR, Albrektsson T, Wennerberg A. Reasons for failures of oral implants. J Oral Rehabil. 2014;41:443–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Esposito M, Thomsen P, Mölne J, Gretzer C, Ericson LE, Lekholm U. Immunohistochemistry of soft tissues surrounding late failures of Brånemark implants. Clin Oral Implants Res. 1997;8:352–66.CrossRefPubMedGoogle Scholar
  8. 8.
    Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci. 1998;106:527–51.CrossRefPubMedGoogle Scholar
  9. 9.
    Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci. 1998;106:721–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Esposito M, Thomsen P, Ericson LE, Lekholm U. Histopathologic observations on early oral implant failures. Int J Oral Maxillofac Implants. 1999;14:798–810.PubMedGoogle Scholar
  11. 11.
    Jemt T, Olsson M, Renouard F, Stenport V, Friberg B. Early implant failures related to individual surgeons: an analysis covering 11,074 operations performed during 28 years. Clin Implant Dent Relat Res. 2016;18:861–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Esposito M, Thomsen P, Ericson LE, Sennerby L, Lekholm U. Histopathologic observations on late oral implant failures. Clin Implant Dent Relat Res. 2000;2:18–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Sánchez-Pérez A, Moya-Villaescusa MJ, Jornet-Garcia A, Gomez S. Etiology, risk factors and management of implant fractures. Med Oral Patol Oral Cir Bucal. 2010;15:e504–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Atieh MA, Alsabeeha NH, Faggion CM Jr, Duncan WJ. The frequency of peri-implant diseases: a systematic review and meta-analysis. J Periodontol. 2013;84:1586–98.PubMedGoogle Scholar
  15. 15.
    Renvert S, Quirynen M. Risk indicators for peri-implantitis. A narrative review. Clin Oral Implants Res. 2015;26:15–44.CrossRefPubMedGoogle Scholar
  16. 16.
    Schwarz F, Iglhaut G, Becker J. Quality assessment of reporting of animal studies on pathogenesis and treatment of peri-implant mucositis and peri-implantitis. A systematic review using the ARRIVE guidelines. J Clin Periodontol. 2012;39:63–72.CrossRefPubMedGoogle Scholar
  17. 17.
    Graziani F, Figuero E, Herrera D. Systematic review of quality of reporting, outcome measurements and methods to study efficacy of preventive and therapeutic approaches to peri-implant diseases. J Clin Periodontol. 2012;39:224–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Faggion CM Jr, Chambrone L, Listl S, Tu YK. Network meta-analysis for evaluating interventions in implant dentistry: the case of peri-implantitis treatment. Clin Implant Dent Relat Res. 2013;15:576–88.CrossRefPubMedGoogle Scholar
  19. 19.
    Algraffee H, Borumandi F, Cascarini L. Peri-implantitis. Br J Oral Maxillofac Surg. 2012;50:689–94.CrossRefPubMedGoogle Scholar
  20. 20.
    Valderrama P, Wilson TG. Detoxification of implant surfaces affected by peri-implant disease: an overview of surgical methods. Int Dent J. 2013;2013:740680.CrossRefGoogle Scholar
  21. 21.
    Canullo L, Schlee M, Wagner W, Covani U. Montegrotto Group for the Study of Peri-implant Disease. International Brainstorming Meeting on Etiologic and Risk Factors of Peri-implantitis, Montegrotto (Padua, Italy), August 2014. Int J Oral Maxillofac Implants. 2015;30:1093–104.CrossRefPubMedGoogle Scholar
  22. 22.
    Watzek G, Ulm C. Compromised alveolar bone quality in edentulous jaws. In: Zarb GA, Lekholm U, Albrektsson T, Tennenbaum H, editors. Aging, osteoporosis, and dental implants. Chicago: Quintessence; 2002. p. 67–84.Google Scholar
  23. 23.
    Quirynen M, Mraiwa N, Van Steenberghe D, Jacobs R. Morphology and dimensions of the mandibular jaw bone in the interforaminal region in patients requiring implants in the distal areas. Clin Oral Implants Res. 2003;14:280–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health: integrating random and fixed effects in multilevel logistic regression. Am J Epidemiol. 2005;161:81–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Saaby M, Karring E, Schou S, Isidor F. Factors influencing severity of peri-implantitis. Clin Oral Implants Res. 2014;27:7–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Chvartszaid D, Koka S. On manufactured diseases, healthy mouths and infected minds. Int J Prosthodont. 2011;24:102–3.PubMedGoogle Scholar
  27. 27.
    Peñarrocha-Diago M, Maestre-Ferrín L, Cervera-Ballester J, Peñarrocha-Oltra D. Implant periapical lesion: diagnosis and treatment. Med Oral Patol Oral Cir Bucal. 2012;17:e1023–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Albrektsson T, Dahlin C, Jemt T, Sennerby L, Turri A, Wennerberg A. Is marginal bone loss around oral implants the result of a provoked foreign body reaction? Clin Implant Dent Relat Res. 2014;16:155–65.CrossRefPubMedGoogle Scholar
  29. 29.
    Trindade R, Albrektsson T, Tengvall P, Wennerberg A. Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration. Clin Implant Dent Relat Res. 2016;18:192–203.CrossRefPubMedGoogle Scholar
  30. 30.
    Miyamoto I, Ishikawa A, Morimoto Y, Takahashi T. Potential risk of asymptomatic osteomyelitis around mandibular third molar tooth for aged people: a computed tomography and histopathologic study. PLoS One. 2013;8:73897.CrossRefGoogle Scholar
  31. 31.
    Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2014;94:5–24.CrossRefPubMedGoogle Scholar
  32. 32.
    Frost HM. Micropetrosis. J Bone Joint Surg Am. 1960;42-A:144–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, et al. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: implications for bone remodeling. Bone. 2012;50:688–94.CrossRefPubMedGoogle Scholar
  34. 34.
    Ciampolini J, Harding KG. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J. 2000;76:479–83.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    O’Sullivan D, King P, Jagger D. Osteomyelitis and pathological mandibular fracture related to a late implant failure: a clinical report. J Prosthet Dent. 2006;95:106–10.CrossRefPubMedGoogle Scholar
  36. 36.
    Montanaro L, Testoni F, Poggi A, Visai L, Speziale P, Arciola CR. Emerging pathogenetic mechanisms of the implant-related osteomyelitis by Staphylococcus aureus. Int J Artif Organs. 2011;34:781–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Lekholm U, Wannfors K, Isaksson S, Adielsson B. Oral implants in combination with bone grafts. A 3-year retrospective multicenter study using the Brånemark implant system. Int J Oral Maxillofac Surg. 1999;28:181–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Albrektsson T. The healing of autologous bone grafts after varying degrees of surgical trauma. A microscopic and histochemical study in the rabbit. J Bone Jt Surg Br. 1980;62:403–10.CrossRefGoogle Scholar
  39. 39.
    Albrektsson T. Repair of bone grafts. A vital microscopic and histological investigation in the rabbit. Scand J Plast Reconstr Surg. 1980;14:1–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Miyamoto I, Yamashita Y, Yamamoto N, Nogami S, Yamauchi K, Yoshiga D, et al. Evaluation of mandibular reconstruction with particulate cancellous bone marrow and titanium mesh after mandibular resection due to tumor surgery. Implant Dent. 2014;23:108–15.CrossRefPubMedGoogle Scholar
  41. 41.
    Miyamoto I, Tsuboi Y, Wada E, Suwa H, Iizuka T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery—clinical, prospective, biomechanical, and imaging study. Bone. 2005;37:776–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Porter JA, von Fraunhofer JA. Success or failure of dental implants? A literature review with treatment considerations. Gen Dent. 2004;53:423–32.Google Scholar

Copyright information

© Japanese Society for Oral and Maxillofacial Radiology and Springer Japan KK 2017

Authors and Affiliations

  • Ikuya Miyamoto
    • 1
  • Tetsu Takahashi
    • 2
  • Tatsurou Tanaka
    • 3
  • Bunichi Hirayama
    • 2
  • Kenko Tanaka
    • 2
  • Toru Yamazaki
    • 4
    • 5
  • Yasuhiro Morimoto
    • 3
  • Izumi Yoshioka
    • 6
  1. 1.Division of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Reconstructive Surgery, School of DentistryIwate Medical UniversityMoriokaJapan
  2. 2.Division of Oral and Maxillofacial Surgery, Department of Oral Medicine and SurgeryTohoku University Graduate School of DentistrySendaiJapan
  3. 3.Division of Oral RadiologyKyushu Dental UniversityKitakyushuJapan
  4. 4.Department of Public Health and Occupational MedicineMie University Graduate School of MedicineTsuJapan
  5. 5.Epidemiology Centre for Disease Control and PreventionMie University HospitalTsuJapan
  6. 6.Division of Oral MedicineKyushu Dental University, KitakyushuKitakyushuJapan

Personalised recommendations