Preserving location privacy using three layer RDV masking in geocoded published discrete point data

  • Ruchika GuptaEmail author
  • Udai Pratap Rao


The prevalent usage of Location Based Services; where getting any informational service is solely based on the user’s current location, have raised an extreme concern over location privacy of the user. The privacy concern becomes paramount when the location tagged data publication like government health care data, district crime record data and the like, are reverse engineered by an adversary to pinpoint the real user against the location given in the specific tuple of the record. Address information is typically considered as a confidential element of the published record and any linkages of this piece of information with publicly available quasi identifier is enough to reveal a lot about a user (which is not apparent otherwise) or hamper the social reputation of the user considering the extreme case. Various geographical masking techniques have been presented and discussed at length in the literature, however, no scheme is able to dispense privacy providing absolute usefulness of the published data. This work is a research attempt to recognize the current state-of-the-art in geographical masking, supportive analysis of the existing masking technique, and come up with a robust solution that serves the purpose of location privacy without making published data worthless. The suggested solution is well suited for geocoded, static, discrete point published data.


Geocoded published data Location privacy Geomasking User privacy 



  1. 1.
    AbdelMalik, P., Boulos, M.N.K., Jones, R.: The perceived impact of location privacy: A Web-based survey of public health perspectives and requirements in the uk and canada. BMC Publ. Health 8, 156 (2008)CrossRefGoogle Scholar
  2. 2.
    Armstrong, M.P., Rushton, G., Zimmerman, D.L., et al.: Geographically masking health data to preserve confidentiality. Stati. Med. 18, 497–525 (1999)CrossRefGoogle Scholar
  3. 3.
    Aurenhammer, F., Klein, R.: Voronoi diagrams. Handbook Comput. Geom. 5, 201–290 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cassa, C.A., Grannis, S.J., Overhage, J.M., Mandl, K.D.: A context-sensitive approach to anonymizing spatial surveillance data. J. Am. Med. Inform. Assoc. 13, 160–165 (2006)CrossRefGoogle Scholar
  5. 5.
    Cignoni, P., Montani, C., Scopigno, R.: Dewall: A fast divide and conquer delaunay triangulation algorithm in ed. Comput.-Aided Des. 30, 333–341 (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cox, L.: Matrix masking methods for disclosure limitation in microdata. Survey Methodol. 20, 165–169 (1994)Google Scholar
  7. 7.
    Curtis, A., Mills, J.W., Agustin, L., Cockburn, M.: Confidentiality risks in fine scale aggregations of health data. Comput. Environ. Urban. Syst. 35, 57–64 (2011)CrossRefGoogle Scholar
  8. 8.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Delaunay triangulations: Height interpolation. Comput. Geom. Algor. Appl. 9, 191–218 (2008)CrossRefGoogle Scholar
  9. 9.
    Du, Q., Emelianenko, M., Ju, L.: Convergence of the lloyd algorithm for computing centroidal voronoi tessellations. SIAM J. Numer. Anal. 44, 102–119 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Duckham, M., Kulik, L.: Location privacy and location-aware computing. Dynamic & Mobile GIS: Investigating Change in Space and Time 3, 35–51 (2006)Google Scholar
  11. 11.
    Duncan, G.T., Pearson, R.W., et al.: Enhancing access to microdata while protecting confidentiality: Prospects for the future. Stat. Sci. 6, 219–232 (1991)CrossRefGoogle Scholar
  12. 12.
    Edelsbrunner, H., Shah, N.R.: Incremental topological flipping works for regular triangulations. Algorithmica 15, 223–241 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Elfick, M.: Contouring by use of a triangular mesh. Cartogr. J. 16, 24–29 (1979)CrossRefGoogle Scholar
  14. 14.
    Elwood, S., Leszczynski, A.: Privacy, reconsidered: New representations, data practices, and the geoWeb. Geoforum 42, 6–15 (2011)CrossRefGoogle Scholar
  15. 15.
    Fortune, S.: A sweepline algorithm for voronoi diagrams. In: Proceedings of the Second Annual Symposium on Computational Geometry, pp 313–322. ACM (1986)Google Scholar
  16. 16.
    Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of delaunay and voronoi diagrams. Algorithmica 7, 381–413 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gupta, R., Rao, U.P.: Achieving location privacy through CAST in location based services. J. Commun. Netw. 19(3), 227–238 (2017)CrossRefGoogle Scholar
  18. 18.
    Gupta, R., Rao, U.P.: An exploration to location based service and its privacy preserving techniques: A survey. Wireles Personal Commun. 96(2), 1973–2007 (2017)CrossRefGoogle Scholar
  19. 19.
    Gupta, R., Rao, U.P.: A hybrid location privacy solution for mobile lbs. Mob. Inf. Syst., 2017 (2017)Google Scholar
  20. 20.
    Gupta, R., Rao, U.P.: VIC-PRO: Vicinity protection by concealing location coordinates using geometrical transformations in location based services. Wireles Personal Commun. 107(2), 1041–1059 (2019)CrossRefGoogle Scholar
  21. 21.
    Hampton, K.H., Fitch, M.K., Allshouse, W.B., Doherty, I.A., Gesink, D.C., Leone, P.A., Serre, M.L., Miller, W.C.: Mapping health data: Improved privacy protection with donut method geomasking. Am. J. Epidemiol. 172(9), 1062–1069 (2010)CrossRefGoogle Scholar
  22. 22.
    Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media (2007)Google Scholar
  23. 23.
    Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discret. Comput. Geom. 22, 333–346 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kounadi, O., Leitner, M.: Spatial information divergence: Using global and local indices to compare geographical masks applied to crime data. Trans. GIS 19, 737–757 (2015)CrossRefGoogle Scholar
  25. 25.
    Kwan, M.-P., Casas, I., Schmitz, B.: Protection of geoprivacy and accuracy of spatial information: How effective are geographical masks? Cartographica: The International Journal for Geographic Information and Geovisualization 39, 15–28 (2004)CrossRefGoogle Scholar
  26. 26.
    Leach, G.: Improving worst-case optimal delaunay triangulation algorithms. In: 4th Canadian Conference on Computational Geometry, pp 340–346. Citeseer (1992)Google Scholar
  27. 27.
    Leitner, M.: A first step towards a framework for presenting the location of confidential point data on maps results of an empirical perceptual study. Int. J. Geogr. Inf. Sci. 20, 813–822 (2006)CrossRefGoogle Scholar
  28. 28.
    Leitner, M., Curtis, A.: Cartographic guidelines for geographically masking the locations of confidential point data. Cartograph. Perspect. 6, 22–39 (2004)CrossRefGoogle Scholar
  29. 29.
    Li, M, Sun, X, Wang, H, Zhang, Y, Zhang, J.: Privacy-aware access control with trust management in Web service. World Wide Web 14(4), 407–430 (2011)CrossRefGoogle Scholar
  30. 30.
    Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE Trans. Commun. 28, 84–95 (1980)CrossRefGoogle Scholar
  31. 31.
    o’Rourke, J., Mallinckrodt, A.J., et al.: Computational geometry in c. Comput. Phys. 9, 55–55 (1995)CrossRefGoogle Scholar
  32. 32.
    Rebay, S.: Efficient unstructured mesh generation by means of delaunay triangulation and bowyer-watson algorithm. J. Comput. Phys. 106, 125–138 (1993)CrossRefzbMATHGoogle Scholar
  33. 33.
    Shu, J, Jia, X, Yang, K, Wang, H: Privacy-preserving task recommendation services for crowdsourcing. IEEE Transactions on Services Computing. (2018)
  34. 34.
    Sinclair, D.: S-hull: A fast radial sweep-hull routine for delaunay triangulation. arXiv:1604.01428 (2016)
  35. 35.
    Su, P., Drysdale, R.L.S.: A comparison of sequential delaunay triangulation algorithms. Comput. Geom. 7, 361–385 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tsai, J.D.V.: Fast topological construction of Delaunay triangulations and Voronoi diagrams. J. Comput. Geosci. 19, 1463–1474 (1993)CrossRefGoogle Scholar
  37. 37.
    Vorono”ı, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. J. für die reine und angewandte Mathematik 134, 198–287 (1908)MathSciNetGoogle Scholar
  38. 38.
    Wang, H, Zhang, Z, Taleb, T.: Special issue on security and privacy of IoT. World Wide Web 21(1), 1–6 (2018)CrossRefGoogle Scholar
  39. 39.
    Weiser, P., Scheider, S.: A civilized cyberspace for geoprivacy. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Privacy in Geographic Information Collection and Analysis, p. 5. ACM (2014)Google Scholar
  40. 40.
    Zandbergen, P.A.: Ensuring confidentiality of geocoded health data: assessing geographic masking strategies for individual-level data. Advances in Medicine, 2014 (2014)Google Scholar
  41. 41.
    Zhang, J, Tao, X, Wang, H.: Outlier detection from large distributed databases. World Wide Web 17(4), 539–568 (2014)CrossRefGoogle Scholar
  42. 42.
    Zhang, J, Li, H, Liu, X, Luo, Y, Chen, F, Wang, H, Chang, L.: On efficient and robust anonymization for privacy protection on massive streaming categorical information. IEEE Trans. Depend. Sec. Comput. 14(5), 507–520 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringChandigarh UniversityPunjabIndia
  2. 2.Computer Engineering DepartmentNational Institute of TechnologySuratIndia

Personalised recommendations