A SDR-based verification platform for 802.11 PHY layer security authentication

  • Xiaoguang Li
  • Jun LiuEmail author
  • Boyan Ding
  • Zhiwei Li
  • Haoyang Wu
  • Tao WangEmail author
Part of the following topical collections:
  1. Special Issue on Security and Privacy in Network Computing


The WiFi security authentication mechanism combined with the PHY layer information has become a hot spot of WiFi security research. The PHY layer contains rich information such as wireless channel, device location, and signal quality. High performance WiFi verification that supports PHY layer programming has become an indispensable tool for WiFi security research. This paper designs and implements a verification platform TickSEC that supports the research of WiFi security authentication at the PHY layer. It supports real-time acquisition of PHY layer information, and offers the programmability within the PHY layer. We also give a case study of WiFi device identification using PHY layer information. Experimental results show that TickSEC can meet the needs of PHY layer WiFi authentication verification.


Software defined radio WiFi security PHY layer FPGA 



The work is funded by National Key Research and Development Plan of China (2017YFB0801702) and key research project of National Natural Science Foundation (No. 61531004).


  1. 1.
    Scikit-learn. (2007)
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    Bagci, I.E., Roedig, U., Martinovic, I., Schulz, M., Hollick, M.: Using channel state information for tamper detection in the internet of things. In: Proceedings of the 31st Annual Computer Security Applications Conference. ACM, pp. 131–140 (2015)Google Scholar
  7. 7.
    Blossom, E.: GNU Radio: tools for exploring the radio frequency spectrum. Linux journal 2004(122), 4 (2004)Google Scholar
  8. 8.
    Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with radiometric signatures. In: Proceedings of the 14th ACM International Conference on Mobile Computing and Networking. ACM, pp. 116–127 (2008)Google Scholar
  9. 9.
    Faria, D.B., Cheriton, D.R.: Detecting identity-based attacks in wireless networks using signalprints. In: Proceedings of the 5th ACM Workshop on Wireless Security. ACM, pp. 43–52 (2006)Google Scholar
  10. 10.
    Fortune, S.J., Gay, D.M., Kernighan, B.W., Landron, O., Valenzuela, R.A., Wright, M.H.: Wise design of indoor wireless systems: practical computation and optimization. IEEE Comput. Sci. Eng. 2(1), 58–68 (1995)CrossRefGoogle Scholar
  11. 11.
    Fuhrmann, D.R., Antonio, G.S.: Transmit beamforming for mimo radar systems using partial signal correlation. IEEE Transaerospelectronsyst 44(1), 1–16 (2008)Google Scholar
  12. 12.
    Han, S.H., Lee, J.H.: An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wirel. Commun. 12(2), 56–65 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Huang, J., Albazrqaoe, W., Xing, G.: Blueid: a Practical System for Bluetooth Device Identification. In: INFOCOM, 2014 Proceedings IEEE. IEEE, pp. 2849–2857 (2014)Google Scholar
  14. 14.
    Jana, S., Kasera, S.K.: On fast and accurate detection of unauthorized wireless access points using clock skews. IEEE Trans. Mob. Comput. 9(3), 449–462 (2010)CrossRefGoogle Scholar
  15. 15.
    Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning. Springer, pp. 137–142 (1998)Google Scholar
  16. 16.
    Kalamandeen, A., Scannell, A., de Lara, E., Sheth, A., Lamarca, A.: Ensemble: cooperative proximity-based authentication. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services. ACM, pp. 331–344 (2010)Google Scholar
  17. 17.
    Khattab, A., Camp, J., Hunter, C., Murphy, P., Sabharwal, A., Knightly, E.W.: WARP: a flexible platform for clean-slate wireless medium access protocol design. ACM SIGMOBILE Mobile Computing and Communications Review 12(1), 56–58 (2008)CrossRefGoogle Scholar
  18. 18.
    Li, X.: A verification platform for WiFi physical layer security research. Master’s thesis, Peking University, Beijing (2017)Google Scholar
  19. 19.
    Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R news 2(3), 18–22 (2002)Google Scholar
  20. 20.
    Liu, F.J., Wang, X., Tang, H.: Robust physical layer authentication using inherent properties of channel impulse response. In: Military Communications Conference, 2011-MILCOM 2011. IEEE, pp. 538–542 (2011)Google Scholar
  21. 21.
    Liu, F.J., Wang, X., Primak, S.L.: A two dimensional quantization algorithm for CIR-based physical layer authentication. In: 2013 IEEE International Conference on Communications (ICC). IEEE, pp. 4724–4728 (2013a)Google Scholar
  22. 22.
    Liu, H., Wang, Y., Yang, J., Chen, Y.: Fast and practical secret key extraction by exploiting channel response. In: INFOCOM, 2013 Proceedings IEEE. IEEE, pp. 3048–3056 (2013b)Google Scholar
  23. 23.
    Liu, H., Wang, Y., Liu, J., Yang, J., Chen, Y.: Practical user authentication leveraging channel state information (CSI). In: Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security. ACM, pp. 389–400 (2014)Google Scholar
  24. 24.
    Mao, Y., Zhang, Y., Zhong, S.: Stemming downlink leakage from training sequences in multi-user MIMO networks. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, pp. 1580–1590 (2016)Google Scholar
  25. 25.
    Olive, D.J.: Linear regression analysis. Technometrics 45(4), 362–363 (2003)CrossRefGoogle Scholar
  26. 26.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
  27. 27.
    Release, M.: The mathworks. Inc, Natick, Massachusetts, United States 488 (2013)Google Scholar
  28. 28.
    Schmogrow, R., Nebendahl, B., Winter, M., Josten, A., Hillerkuss, D., Koenig, S., Meyer, J., Dreschmann, M., Huebner, M., Koos, C.: Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photon. Technol. Lett. 24(1), 61–63 (2011)CrossRefGoogle Scholar
  29. 29.
    Van de Beek, J.J., Sandell, M., Borjesson, P.O.: Ml estimation of time and frequency offset in ofdm systems. IEEE Trans. Signal Process. 45(7), 1800–1805 (1997)CrossRefGoogle Scholar
  30. 30.
    Winterstein, F., Bayliss, S., Constantinides, G.A.: High-level synthesis of dynamic data structures: a case study using vivado hls. In: International Conference on Field-Programmable Technology, pp. 362–365 (2013)Google Scholar
  31. 31.
    Wu, H., Wang, T., Yuan, Z., Peng, C., Li, Z., Tan, Z., Ding, B., Li, X., Li, Y., Liu, J., et al.: The tick programmable low-latency sdr system. In: Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking. ACM, pp. 101–113 (2017)Google Scholar
  32. 32.
    Xi, W., Li, X., Qian, C., Han, J., Tang, S., Zhao, J., Zhao, K.: KEEP: Fast secret key extraction protocol for D2D communication. In: 2014 IEEE 22nd International Symposium of Quality of Service (IWQoS). IEEE, pp. 350–359 (2014)Google Scholar
  33. 33.
    Xiao, L., Greenstein, L., Mandayam, N., Trappe, W.: Fingerprints in the ether: using the physical layer for wireless authentication. In: IEEE International Conference on Communications. IEEE, pp. 4646–4651 (2007)Google Scholar
  34. 34.
    Xiao, L., Reznik, A., Trappe, W., Ye, C., Shah, Y., Greenstein, L., Mandayam, N.: PHY-authentication protocol for spoofing detection in wireless networks. In: Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE. IEEE, pp. 1–6 (2010)Google Scholar
  35. 35.
    Xiong, J., Jamieson, K.: Securearray: improving wifi security with fine-grained physical-layer information. In: Proceedings of the 19th Annual International Conference on Mobile Computing and Networking. ACM, pp. 441–452 (2013)Google Scholar
  36. 36.
    Yang, J., Chen, Y., Trappe, W., Cheng, J.: Detection and localization of multiple spoofing attackers in wireless networks. IEEE Trans. Parallel Distrib. Syst. 24(1), 44–58 (2013)CrossRefGoogle Scholar
  37. 37.
    Zeng, K., Govindan, K., Mohapatra, P.: Non-cryptographic authentication and identification in wireless networks [security and privacy in emerging wireless networks]. IEEE Wirel. Commun. 17(5), 56–62 (2010)CrossRefGoogle Scholar
  38. 38.
    Zhang, M.L., Zhou, Z.H.: Ml-knn: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Peking UniversityBeijingChina

Personalised recommendations