Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

IG-Tree: an efficient spatial keyword index for planning best path queries on road networks

Abstract

Due to the popularity of Spatial Databases, many search engine providers have started to expand their text searching capability to include geographical information. Because of this reason, many new queries on spatial objects affiliated with textual information, known as the Spatial Keyword Queries, have taken significant research interest in the past years. Unfortunately, most of existing works on Spatial Keyword Queries only focus on objects retrieval. There is barely any work on route planning queries, even though route planning is often needed in our daily life. In this research, we propose the Best Path Query, which we find the best optimum route from two different spatial locations that visits or avoids the objects that are specified by the textual data given by the user. We show that Best Path Query is an NP-Hard problem. We propose an efficient indexing technique, namely IG-Tree, and three different algorithms with different trade-offs to process the Best Path Queries on Road Networks. Our extensive experimental study demonstrates the efficiency and accuracy of our proposed approach.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Notes

  1. 1.

    Object density: the quantity of keyword matched objects for each query keyword compared to the number of vertices in the road network.

References

  1. 1.

    Adhinugraha, K.M., Taniar, D., Indrawan, M.: Finding reverse nearest neighbors by region. Concurrency Comput. Pract. Exp. 26(5), 1142–1156 (2014)

  2. 2.

    Alsubaiee, S., Li, C.: Fuzzy keyword search on spatial data. In: International Conference on Database Systems for Advanced Applications, pp. 464–467 (2010)

  3. 3.

    Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

  4. 4.

    Arora, S.: Approximation schemes for np-hard geometric optimization problems: a survey. Math. Program. 97(1), 43–69 (2003)

  5. 5.

    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: an efficient and robust access method for points and rectangles. In: ACM SIGMOD, pp. 322–331 (1990)

  6. 6.

    Chen, Y.Y., Suel, T., Markowetz, A.: Efficient query processing in geographic Web search engines. In: ACM SIGMOD, pp. 277–288 (2006)

  7. 7.

    Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: Proceedings of the VLDB Endowment, vol. 6, pp. 217–228 (2013)

  8. 8.

    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial Web objects. Proc. VLDB Endow. 2(1), 337–348 (2009)

  9. 9.

    Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial Web objects. Proc. VLDB Endow. 3(1-2), 373–384 (2010)

  10. 10.

    Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: ACM SIGMOD, pp. 373–384 (2011)

  11. 11.

    Cao, X., Chen, L., Cong, G., Jensen, C.S., Qu, Q., Skovsgaard, A., Wu, D., Yiu, M.L.: Spatial keyword querying. In: Conceptual Modeling, pp. 16–29 (2012)

  12. 12.

    Cao, X., Chen, L., Cong, G., Guan, J., Phan, N.T., Xiao, X.: Kors: keyword-aware optimal route search system. In: IEEE ICDE, pp. 1340–1343 (2013)

  13. 13.

    Cao, X., Cong, G., Jensen, C.S., Yiu, M.L.: Retrieving regions of interest for user exploration. Proc. VLDB Endow. 7(9), 733–744 (2014)

  14. 14.

    Choi, D.W., Chung, C.W.: A k-partitioning algorithm for clustering large-scale spatio-textual data. Inf. Syst. 64(Supplement C), 1 – 11 (2017)

  15. 15.

    De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: IEEE ICDE, pp. 656–665 (2008)

  16. 16.

    Gao, Y., Qin, X., Zheng, B., Chen, G.: Efficient reverse top-k boolean spatial keyword queries on road networks. IEEE Trans. Knowl. Data Eng. 27(5), 1205–1218 (2015)

  17. 17.

    Guo, L., Shao, J., Aung, H., Tan, K.L.: Efficient continuous top-k spatial keyword queries on road networks. GeoInformatica 19(1), 29–60 (2015)

  18. 18.

    Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (Sk) queries in geographic information retrieval (Gir) systems. In: ACM SSDBM, pp. 16–16 (2007)

  19. 19.

    Hashem, T., Hashem, T., Ali, M.E., Kulik, L.: Group trip planning queries in spatial databases. In: SSTD, pp. 259–276 (2013)

  20. 20.

    http://www.dis.uniroma1.it/challenge9/download.shtml. Last accessed 22 January 2018

  21. 21.

    http://www.wjh.harvard.edu/∼inquirer/No.html. Last accessed 22 January 2018

  22. 22.

    https://github.com/jeffreybreen/twitter-sentiment-analysis-tutorial-201107/blob/master/data/opinion-lexicon-English/negative-words.txt. Last accessed 22 January 2018

  23. 23.

    Hu, H., Li, G., Bao, Z., Feng, J., Wu, Y., Gong, Z., Xu, Y.: Top-k spatio-textual similarity join. IEEE Trans. Knowl. Data Eng. 28(2), 551–565 (2016)

  24. 24.

    Hwang, K., Cho, S.: A lifelog browser for visualization and search of mobile everyday-life. Mob. Inf. Syst. 10(3), 243–258 (2014)

  25. 25.

    Jones, C.B., Abdelmoty, A.I., Finch, D., Fu, G., Vaid, S.: Geographic information science: proceedings of the third international conference, GIScience, Chap. The spirit spatial search engine: architecture, ontologies and spatial indexing (2004)

  26. 26.

    Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In: Proceedings of the ACM/IEEE Conference on Supercomputing (1995)

  27. 27.

    Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.H.: On trip planning queries in spatial databases. In: SSTD, pp. 273–290 (2005)

  28. 28.

    Li, Z., Lee, K.C.K., Zheng, B., Lee, W.C., Lee, D., Wang, X.: Ir-tree: an efficient index for geographic document search. IEEE Trans. Knowl. Data Eng. 23 (4), 585–599 (2011)

  29. 29.

    Li, Y., Wu, D., Xu, J., Choi, B., Su, W.: Spatial-aware interest group queries in location-based social networks. Data Knowl. Eng. 92(Supplement C), 20–38 (2014)

  30. 30.

    Li, Y., Li, G., Li, J., Yao, K.: Skqai: a novel air index for spatial keyword query processing in road networks. Inf. Sci. 430-431(Supplement C), 17 – 38 (2018)

  31. 31.

    Long, C., Wong, R.C.W., Wang, K., Fu, A.W.C.: Collective spatial keyword queries: a distance owner-driven approach. In: ACM SIGMOD, pp. 689–700 (2013)

  32. 32.

    Lu, J., Lu, Y., Cong, G.: Reverse spatial and textual k nearest neighbor search. In: ACM SIGMOD, pp. 349–360 (2011)

  33. 33.

    Luo, S., Luo, Y., Zhou, S., Cong, G., Guan, J., Yong, Z.: Distributed spatial keyword querying on road networks. In: EDBT, pp. 235–246 (2014)

  34. 34.

    Luo, C., Junlin, L., Li, G., Wei, W., Li, Y., Li, J.: Efficient reverse spatial and textual k nearest neighbor queries on road networks. Knowl-Based Syst. 93 (Supplement C), 121 – 134 (2016)

  35. 35.

    Rocha-Junior, J.B., Nørvåg, K.: Top-K spatial keyword queries on road networks. In: EDBT, pp. 168–179 (2012)

  36. 36.

    Sharifzadeh, M., Kolahdouzan, M., Shahabi, C.: The optimal sequenced route query. VLDB J. 17(4), 765–787 (2008)

  37. 37.

    Soma, S.C., Hashem, T., Cheema, M.A., Samrose, S.: Trip planning queries with location privacy in spatial databases. World Wide Web 20(2), 205–236 (2017)

  38. 38.

    Waluyo, A.B., Srinivasan, B., Taniar, D.: Research in mobile database query optimization and processing. Mob. Inf. Syst. 1(4), 225–252 (2005)

  39. 39.

    Waluyo, A.B., Taniar, D., Rahayu, W., Srinivasan, B.: Mobile service oriented architectures for nn-queries. J. Netw. Comput. Appl. 32(2), 434–447 (2009)

  40. 40.

    Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query processing. In: IEEE ICDE, pp. 541–552 (2011)

  41. 41.

    Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. IEEE Trans. Knowl. Data Eng. 24(10), 1889–1903 (2012)

  42. 42.

    Xu, J., Lu, H.: Efficiently answer top-k queries on typed intervals. Inf. Syst. 71(Supplement C), 164–181 (2017)

  43. 43.

    Xu, Y., Guan, J., Li, F., Zhou, S.: Scalable continual top-k keyword search in relational databases. Data Knowl. Eng. 86, 206–223 (2013)

  44. 44.

    Yairi, I., Igi, S.: Mobility support gis with universal-designed data of barrier/barrier-free terrains and facilities for all pedestrians including the elderly and the disabled. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 2909–2914 (2006)

  45. 45.

    Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K., Kitsuregawa, M.: Keyword search in spatial databases: towards searching by document. In: IEEE ICDE, pp. 688–699 (2009)

  46. 46.

    Zhang, D., Ooi, B.C., Tung, A.K.H.: Locating mapped resources in Web 2.0. In: IEEE ICDE, pp. 521–532 (2010)

  47. 47.

    Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: EDBT, pp. 367–378 (2014)

  48. 48.

    Zhang, P., Lin, H., Yao, B., Lu, D.: Level-aware collective spatial keyword queries. Inf. Sci. 378(Supplement C), 194 – 214 (2017)

  49. 49.

    Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactive top-k spatial keyword queries. In: IEEE ICDE, pp. 423–434 (2015)

  50. 50.

    Zhong, R., Fan, J., Li, G., Tan, K.L., Zhou, L.: Location-aware instant search. In: ACM CIKM, pp. 385–394 (2012)

  51. 51.

    Zhong, R., Li, G., Tan, K.L., Zhou, L.: G-Tree: an efficient index for knn search on road networks. In: ACM CIKM, pp. 39–48 (2013)

  52. 52.

    Zhong, R., Li, G., Tan, K.L., Zhou, L., Gong, Z.: G-tree: an efficient and scalable index for spatial search on road networks. IEEE Trans. Knowl. Data Eng. 27(8), 2175–2189 (2015)

  53. 53.

    http://www.statisticbrain.com/mobile-browser-vs-application-preferences/

  54. 54.

    http://blog.globalwebindex.net/chart-of-the-day/top-global-smartphone-apps-who-s-in-the-top-10/

  55. 55.

    http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm

Download references

Author information

Correspondence to Anasthasia Agnes Haryanto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haryanto, A.A., Islam, M.S., Taniar, D. et al. IG-Tree: an efficient spatial keyword index for planning best path queries on road networks. World Wide Web 22, 1359–1399 (2019). https://doi.org/10.1007/s11280-018-0643-5

Download citation

Keywords

  • Spatial databases
  • Spatial keywords
  • Trip planning queries
  • IG-Tree
  • Best path
  • Road networks