World Wide Web

, Volume 22, Issue 6, pp 2589–2610 | Cite as

Extended search method based on a semantic hashtag graph combining social and conceptual information

  • Wanqiu Cui
  • Junping DuEmail author
  • Dawei Wang
  • Feifei Kou
  • Meiyu Liang
  • Zhe Xue
  • Nan Zhou
Part of the following topical collections:
  1. Special Issue on Web and Big Data


Searching for microblog short text by their meaning is a challenging task because of the semantic sparsity of the information in social networks. The extended search approaches are commonly accepted which facilitate short text understanding and search by enriching the short text. However, they only analyze the literal semantics of short text, and the unique social characteristics of social network which also contain semantic information are not utilized well. To better capture the rich semantics in microblog short text, we propose a new microblog short text extended search method based on a semantic hashtag graph by combining social and conceptual information, which enriches each short text by concepts and associated hashtags to represent whole semantic features. Considering the microblog context, we introduce concepts through Wikipedia, as well as semantic consistency of hashtags. Specifically, for conceptual semantics, we propose a conceptual analysis method which merges explicit and implicit information in Wikipedia. For social semantics in hashtags, a semantic hashtag graph which combines social and conceptual information is put forward to generate semantic associated hashtags. We conduct experiments and the results show that our method is obviously better than the other existing state-of-the-art approaches in semantic understanding and search of short text.


Extended search Semantic analysis Social characteristics Conceptual semantics Social semantics 



This work was supported by the National Natural Science Foundation of China (NSFC) under Grant (No.61320106006, No.61532006, No.61772083, No. 61502042).


  1. 1.
    Albishre, K., Li, Y.F., Xu, Y.: Effective pseudo-relevance for microblog retrieval. In: Australasian Computer Science Week Multi conference, pp.51. ACM (2017)Google Scholar
  2. 2.
    Bandyopadhyay, A., Ghosh, K., Majumder, P., Mitra, M.: Query expansion for microblog retrieval. Int. J. Web Sci. 1(4), 368–380 (2012)CrossRefGoogle Scholar
  3. 3.
    Bansal, P., Jain, S., Varma, V.: Towards Semantic Retrieval of Hashtags in Microblogs. In: Proceedings of the 24th International Conference on World Wide Web, pp.7–8. ACM (2015)Google Scholar
  4. 4.
    Cao, G., Nie, J.Y., Gao, J.F., Stephen, R.: Selecting good expansion terms for pseudo-relevance feedback. In: Proceedings of the 31st annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.243–250. ACM (2008)Google Scholar
  5. 5.
    Cindy, H., William, A.W., Malik, M.I.: Query expansion. In: Encyclopedia of Social Network Analysis and Mining, pp. 1455–1455. Springer, New York (2014)Google Scholar
  6. 6.
    David, M.B., Andrew, Y.N., Michael, I.J.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  7. 7.
    Doroudian, M., Akbari, R.: Using ontologies for developing a search mechanism in social networks. In: International Industrial Engineering Conference, pp.114–120. IJWA (2014)Google Scholar
  8. 8.
    Egozi, O., Markovitch, S., Gabrilovich, E.: Concept-based information retrieval using explicit semantic analysis. ACM Trans. Inf. Syst. 29(2), 1–34 (2011)CrossRefGoogle Scholar
  9. 9.
    Fan, F.F., Qiang, R.W., Lv, C., Yang, J. W.: Improving microblog retrieval with feedback entity model. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp.573–582. ACM (2015)Google Scholar
  10. 10.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: international joint conference on Artificial intelligence, pp.1606–1611. IJCAI (2007)Google Scholar
  11. 11.
    Gao, L.L., Wang, Y., Li, D.S., Shao, J.M., Song, J.K.: Real-time social media retrieval with spatial, temporal and social constraints. Neurocomputing. 253, 77–88 (2017)CrossRefGoogle Scholar
  12. 12.
    Guo, D., Gao, P.F.: Complex-query Web image search with concept-based relevance estimation. World Wide Web. 19(2), 247–264 (2016)CrossRefGoogle Scholar
  13. 13.
    Hawking, D., Craswell, N., Bailey, P., Griffihs, K.: Measuring search engine quality. Inf. Retr. 4(1), 33–59 (2001)CrossRefGoogle Scholar
  14. 14.
    Herranz, L., Jiang, S.Q., Li, X.Y, Scene recognition with CNNs: objects, scales and dataset Bias. In: Computer Vision and Pattern Recognition, pp,571–579. CVPR (2016)Google Scholar
  15. 15.
    Hong, K.J., Kim, H.J.: A Semantic Search Technique with wikipedia-based text representation model. In: 2016 International Conference on Big Data and Smart Computing, pp.177–182. IEEE (2016)Google Scholar
  16. 16.
    Hua, W., Wang, Z.Y., Wang, H.X., Zheng, K., Zhou, X.F.: Understand short texts by harvesting and analyzing semantic knowledge. IEEE Trans. Knowl. Data Eng. 29(3), 499–512 (2017)CrossRefGoogle Scholar
  17. 17.
    Huang, G.Y., He, J., Zhang, Y.C., Zhou, W.L., Liu, H., Zhang, P., Ding, Z.M., You, Y., Cao, J.: Mining streams of short text for analysis of world-wide event evolutions. World Wide Web. 18(5), 1201–1217 (2015)CrossRefGoogle Scholar
  18. 18.
    Jia, Y., Gan, L., Li, A.P., Xu, J.: Research progress and development trend of online social network smart search. J. Commun. 36(12), 9–12 (2015)Google Scholar
  19. 19.
    Jiang, D., Leung, W.T., Ng, W.: Query intent mining with multiple dimensions of Web search data. World Wide Web. 19(3), 475–497 (2016)CrossRefGoogle Scholar
  20. 20.
    Jiang, Y.C., Bai, W., Zhang, X.P., Hu, J.J.: Wikipedia-based information content and semantic similarity computation. Inf. Process. Manag. 53(1), 248–265 (2016)CrossRefGoogle Scholar
  21. 21.
    Kang, J.H., Luo, Z.X.: Research on RDF data storage based on graph database Neo4j. Inf. Technol. 6, 031 (2015)Google Scholar
  22. 22.
    Kiesel, J., Potthast, M., Hagen, M., Stein, B.: Spatio-temporal analysis of reverted wikipedia edits. In: International AAAI Conference on Web and Social Media, pp,122–131. AAAI (2017)Google Scholar
  23. 23.
    Kotov, A., Zhai, C.X.: Tapping into knowledge base for concept feedback: leveraging conceptnet to improve search results for difficult queries. In: Proceedings of the fifth ACM International Conference on Web Search and Data Mining, pp.403–412. ACM (2012)Google Scholar
  24. 24.
    Lu, Z., Zha, H.Y., Yang, X.K., Lin, W.Y., Zheng, Z.H.: A new algorithm for inferring user search goals with feedback sessions. IEEE Trans. Knowl. Data Eng. 25(3), 502–513 (2013)CrossRefGoogle Scholar
  25. 25.
    Luo, Z.C., Yu, Y., Osborne, M., Wang, T.: Structuring tweets for improving twitter search. J. Assoc. Inf. Sci. Technol. 66(12), 2522–2539 (2015)CrossRefGoogle Scholar
  26. 26.
    Miyanishi, T., Seki, K., Uehara, K.: Time-Aware Latent Concept Expansion for Microblog Search. In: International AAAI Conference on Web and Social Media. AAAI (2014)Google Scholar
  27. 27.
    Ogilvie, P., Voorhees, E., Callan, J.: On the number of terms used in automatic query expansion. Inf. Retr. 12(6), 666–679 (2009)CrossRefGoogle Scholar
  28. 28.
    PérezAgüera, J.R., Arroyo, J., Greenberg, J, Iglesias, J.P., Fresno V: Using BM25F for semantic search. In: Proceedings of the 3rd International Semantic Search Workshop, pp.2. ACM (2010)Google Scholar
  29. 29.
    Péreziglesias, J., Pérezagüera, J.R., Fresno, V., Feinstein, Y.Z.: Integrating the probabilistic models BM25/BM25F into Lucene. Comput. Sci. 5046, (2009)Google Scholar
  30. 30.
    Shi, Z.D., Keung, J., Song, Q.B.: An empirical study of BM25 and BM25F based feature location techniques. In: Proceedings of the International Workshop on Innovative Software Development Methodologies and Practices, pp.106–114. ACM (2014)Google Scholar
  31. 31.
    Song, X.H., Jiang, S.Q., Herranz, L.: Multi-scale multi-feature context modeling for scene recognition in the semantic manifold. IEEE Trans. Image Process. 26(6), 2721–2735 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sun, J., Xu, J., Zheng, K., Liu, C.: Interactive spatial keyword querying with semantics. In: ACM on Conference on Information and Knowledge Management, pp, 1727–1736. CIKM (2017)Google Scholar
  33. 33.
    Tran, T., Tran, N.K., Asmelash, T.H., Jäschke, R.: Semantic annotation for microblog topics using wikipedia temporal information. EMNLP (2017)Google Scholar
  34. 34.
    Wang, Z., Zhao, K., Wang, H., Meng, X.F., Wen, J.R.: Query understanding through knowledge-based conceptualization. In: International Conference on Artificial Intelligence, pp.3264–3270. IJCAI(2015)Google Scholar
  35. 35.
    Wang, X.Y., Zheng, Y.Q., Xiao, Y.H.: Entity-relation modeling and discovery for smart search. J. Commun. 36(12), 17–27 (2015)Google Scholar
  36. 36.
    Wang, Y., Liu, J., Huang, Y.L., Feng, X.: Using hashtag graph-based topic model to connect semantically-related words without co-occurrence in microblogs. IEEE Trans. Knowl. Data Eng. 28(7), 1919–1933 (2016)CrossRefGoogle Scholar
  37. 37.
    Wang, Z.Y., Cheng, J.P., Wang, H.X.: Short text understanding: a survey. J Comput. Res. Dev. 53(2), 262–269 (2016)MathSciNetGoogle Scholar
  38. 38.
    Wang, Y.S., Huang, H.Y., Feng, C.: Query expansion based on a feedback concept model for microblog retrieval. In: Proceeding of the 26th International Conference on World Wide Web, pp.559–568. ACM (2017)Google Scholar
  39. 39.
    Wiemer-Hastings, P., Wiemer-Hastings, K. and Graesser, A.: Latent Semantic Analysis. In: Proceedings of the 16th international joint conference on Artificial intelligence, pp.1–14. IJCAI (2004)Google Scholar
  40. 40.
    Wu, W.T., Li, H.S., Wang, H.X., Zhu, K.Q.: Probase: a probabilistic taxonomy for text understanding. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp.481–492. ACM (2012)Google Scholar
  41. 41.
    Xia, F., Yu, C.C., Xu, L.H., Qian, W.N., Zhou, A.Y.: Top- k Temporal Keyword Search over Social Media Data. World Wide Web. 20(5), 1–21 (2017)CrossRefGoogle Scholar
  42. 42.
    Xu, Z.G., Liu, L., Cai, H.B., Yan, S.Y.: Research on Chinese Microblog's semantic expansion model based on specific context. In: 11th International Conference on International Conference on Fuzzy Systems and Knowledge Discovery, pp.610-615. IEEE (2014)Google Scholar
  43. 43.
    Ye, Z., Huang, J.X., Lin, H.F.: Finding a good query-related topic for boosting pseudo-relevance feedback. J. Assoc. Inf. Sci. Technol. 62(4), 748–760 (2014)CrossRefGoogle Scholar
  44. 44.
    Yu, Z., Wang, H.X., Lin, X.M., Wang, M.: Understanding Short Texts through Semantic Enrichment and Hashing. IEEE Trans. Knowl. Data Eng. 28(2), 566–579 (2016)CrossRefGoogle Scholar
  45. 45.
    Zhao, F., Zhu, Y.J., Jin, H., Yang, L.T.: A personalized hashtag recommendation approach using LDA-based topic model in microblog environment[J]. Futur. Gener. Comput. Syst. 65, 196–206 (2016)CrossRefGoogle Scholar
  46. 46.
    Zhou, D., Wu, X., Zhao, W.Y., Lawless, S., Liu, J.X.: Query expansion with enriched user profiles for personalized search utilizing folksonomy data. IEEE Trans. Knowl. Data Eng. 29(7), 1536–1548 (2017)CrossRefGoogle Scholar
  47. 47.
    Zuo, Y., Zhao, J.C., Xu, K.: Word network topic model: a simple but general solution for short and imbalanced texts. Knowl. Inf. Syst. 48(2), 379–398 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, School of Computer ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of InformationRenmin University of ChinaBeijingChina

Personalised recommendations