Advertisement

World Wide Web

, Volume 22, Issue 3, pp 945–966 | Cite as

An efficient method for top-k graph based node matching

  • Guanfeng Liu
  • Qun Shi
  • Kai ZhengEmail author
  • An Liu
  • Zhixu Li
  • Xiaofang Zhou
Article
  • 128 Downloads
Part of the following topical collections:
  1. Special Issue on Geo-Social Computing

Abstract

Graph Pattern Matching (GPM) is to find those subgraphs that match a given pattern graph. In many applications, users are interested in the top-k nodes that matches the label of a specific node, (named as the designated node vd) included in a given pattern graph, rather than the entire set of matching. This is called Graph Pattern based Node Matching (GPNM) problem. However, the existing GPM methods for matching the designated node vd in social graphs do not consider the social contexts like the social relationships, the social trust and the social positions which commonly exist in real applications, like the experts recommendation in social graphs, leading to deliver low quality designated nodes. In this paper, we first propose the conText-Aware Graph pattern based Top-K designed nodes finding problem (TAG-K), which involves the NP-Complete Multiple Constrained GPM problem, and thus it is NP-Complete. To address the efficiency and effectiveness issues of TAG-K in large-scale social graphs, we propose two indices, MA-Tree and SSC-Index, which can help efficiently find the Top-K matching. Furthermore, we propose a probabilistic algorithm based on the Monte Carlo Method, called MC-TAG-K. Based on the experimental results on five real social graphs, we have demonstrated that MC-TAG-K outperforms the existing methods in both efficiency and effectiveness.

Keywords

Top-k Node matching Social graph 

References

  1. 1.
    Berger, P., Luckmann, T.: The social construction of reality: a treatise in the sociology of knowledge. Anchor books (1966)Google Scholar
  2. 2.
    Biggs, N., Lloyd, E., Wilson, R.: Graph theory. Oxford University Press, Oxford (1986)zbMATHGoogle Scholar
  3. 3.
    Chang, L., Lin, X., Zhang, W., Yu, J.X., Zhang, Y., Qin, L.: Optimal enumeration: efficient top-k tree matching. VLDB 8(5), 533–544 (2015)Google Scholar
  4. 4.
    Chevalier, F., Domenger, J.P., Pineau, J.B., Delest, M.: Retrieval of objects in video by similarity based on graph matching. Pattern Recogn. Lett. 28(8), 939–949 (2007)CrossRefGoogle Scholar
  5. 5.
    Cohen, S., Kimelfeld, B., Koutrika, G., Jan, V.: On principles of egocentric person search in social networks. In: Workshop on VLDS, pp. 3–6 (2011)Google Scholar
  6. 6.
    Demuth, H.B., Beale, M.H., Jess, O.D., Hagan, T.M.: Neural network design (2014)Google Scholar
  7. 7.
    Ding, X., Jia, J., Li, J., Liu, J., Jini, H.: Top-k similarity matching in large graphs with attributes. In: DASFAA, pp. 156–170 (2014)Google Scholar
  8. 8.
    Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fan, W., Li, J., Wang, X., Wu, Y.: Query preserving graph compression. In: SIGMOD’12, pp. 157–168 (2012)Google Scholar
  10. 10.
    Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern matching. VLDB 6(13), 1510–1521 (2013)Google Scholar
  11. 11.
    Fani, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from intractable to polynomial time. VLDB 3(1-2), 264–275 (2010)Google Scholar
  12. 12.
    Gentle, J., Hardle, W., Mori, Y.: Handbook of computational statistics. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lappas, T., Liu, K., Terzi, E.: A survey of algorithms and systems for expert location in social networks. In: Social network data analytics, pp. 215–241 (2011)Google Scholar
  14. 14.
    Li, L., Wang, Y., Liu, G., Wang, M., Wu, X.: Context-aware reviewer assignment for trust enhanced peer review. PloS One 10(6), 1–28 (2015)Google Scholar
  15. 15.
    Liu, G., Wang, Y., Orgun, M.A.: Quality of Trust for Social Trust Path Selection in Complex Social Networks, in AAMAS, pp. 1575–1576 (2010)Google Scholar
  16. 16.
    Liu, G., Wang, Y., Orgun, M.A.: Trust transitivity in complex social networks. In: AAAI, pp. 1222–1229 (2011)Google Scholar
  17. 17.
    Liu, G., Wang, Y., Orgun, M.A.: Social context-aware trust network discovery in complex contextual social networks. In: AAAI, pp. 101–107 (2012)Google Scholar
  18. 18.
    Liu, G., Wang, Y., Orgun, M.A., et al.: Optimal social trust path selection in complex social networks. In: AAAI, pp. 1397–1398 (2010)Google Scholar
  19. 19.
    Liu, G., Wang, Y., Orgun, M.A., Lim, E.P.: Finding the optimal social trust path for the selection of trustworthy service providers in complex social networks. IEEE Trans. Serv. Comput. 6(2), 152–167 (2013)CrossRefGoogle Scholar
  20. 20.
    Liu, G., Zheng, K., Wang, Y., Orgun, M.A., Liu, A., Zhao, L., Zhou, X.: Multi-constrained graph pattern matching in large-scale contextual social graphs. In: ICDE, pp. 351–362 (2015)Google Scholar
  21. 21.
    Milano, R., Baggio, R., Piattelli, R.: The effects of online social media on tourism websites. In: ENTER, pp. 471–483 (2011)Google Scholar
  22. 22.
    Modiano, E.: Traffic grooming in wdm networks. IEEE Commun. Mag. 39(7), 124–129 (2001)CrossRefGoogle Scholar
  23. 23.
    Morris, M.R., Teevan, J., Panovich, K.: What do people ask their social networks, and why?: a survey study of status message q&a behavior. In: CHI, pp. 1739–1748 (2010)Google Scholar
  24. 24.
    Rauch, M., Thomas, H., Peter, K.: Computing simulations on finite and infinite graphs. In: Annual symposium o foundations of computer science, pp. 453–462 (1995)Google Scholar
  25. 25.
    Raymond, W.J., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–533 (2002)CrossRefGoogle Scholar
  26. 26.
    Schenkel, R., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J., Weikum, G.: Efficient top-k querying over social-tagging networks. In: SIGIR, pp. 523–530 (2008)Google Scholar
  27. 27.
    Tang, J., Zhang, J., Yan, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and mining of academic social networks. In: KDD, pp. 990–998 (2008)Google Scholar
  28. 28.
    Tian, Y., Patel, P.M.: Tale: A tool for approximate large graph matching. In: ICDE, pp. 963–972 (2008)Google Scholar
  29. 29.
    Ullmann, R.J.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wang, Y., Tan, K.L., Ren, J.: A study of building internet marketplaces on the basis of mobile agents for parallel processing. World Wide Web Journal 5(1), 41–66 (2002)CrossRefzbMATHGoogle Scholar
  31. 31.
    Yan, S., Zheng, X., Wang, Y., Song, W., Zhang, W.: A Graph-Based Comprehensive Reputation Model: Exploiting the Social Context of Opinions to Enhance Trust in Social Commerce. Inform. Sci. 318, 51–72 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yildirim, H., Chaoji, V., Zaki, M.J.: Grail: Scalable reachability index for large graphs. In: VLDB, pp. 276–284 (2010)Google Scholar
  33. 33.
    Yin, H., Cui, B., Zhou, X., Wang, W., Huang, Z., Sadiq, S.: Joint modeling of user check-in behaviors for real-time point-of-interest recommendation ACM Transactions on Information Systems (TOIS) 35(2). No.11 (2016)Google Scholar
  34. 34.
    Yin, H., Hu, Z., Zhou, X., Wang, H., Zheng, K., Nguyen, Q., Sadiq, S.: Discovering interpretable geo-social communities for user behavior prediction. In: ICDE, pp. 942–953 (2016)Google Scholar
  35. 35.
    Yin, H., Wang, W., Wang, H., Chen, L., Zhou, X.: Spatial-aware hierarchical collaborative deep learning for poi recommendation. IEEE Trans. Knowl. Data Eng. 29(11), 2537–2551 (2017)CrossRefGoogle Scholar
  36. 36.
    Yoo, S.Y., Yang, F.L., Moon, I.: Mining social networks for personalized email prioritization. In: KDD, pp. 967–976 (2009)Google Scholar
  37. 37.
    Zheng, X., Wang, Y., Orgun, M.A., Liu, G.: Trust prediction with propagation and similarity regularization. In: AAAI, pp. 237–244 (2014)Google Scholar
  38. 38.
    Zhu, Y., Qin, L., Yu, J.X., Cheng, H.: Finding top-k similar graphs in graph databases. In: EDBT, pp. 456–467 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guanfeng Liu
    • 1
  • Qun Shi
    • 2
  • Kai Zheng
    • 3
    Email author
  • An Liu
    • 2
  • Zhixu Li
    • 2
  • Xiaofang Zhou
    • 4
  1. 1.Department of ComputingMacquarie UniversitySydneyAustralia
  2. 2.School of Computer Science and TechnologySoochow UniversitySuzhou ShiChina
  3. 3.School of Computer Science and Engineering and Big Data Research CenterUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.School of Information Technology and Electrical EngineeringThe University of QueenslandSt LuciaAustralia

Personalised recommendations