World Wide Web

, Volume 21, Issue 3, pp 573–594 | Cite as

Semantic-aware top-k spatial keyword queries

  • Zhihu Qian
  • Jiajie Xu
  • Kai Zheng
  • Pengpeng Zhao
  • Xiaofang Zhou


The fast development of GPS equipped devices has aroused widespread use of spatial keyword querying in location based services nowadays. Existing spatial keyword query methodologies mainly focus on the spatial and textual similarities, while leaving the semantic understanding of keywords in spatial Web objects and queries to be ignored. To address this issue, this paper studies the problem of semantic based spatial keyword querying. It seeks to return the k objects most similar to the query, subject to not only their spatial and textual properties, but also the coherence of their semantic meanings. To achieve that, we propose novel indexing structures, which integrate spatial, textual and semantic information in a hierarchical manner, so as to prune the search space effectively in query processing. Extensive experiments are carried out to evaluate and compare them with other baseline algorithms.


Spatial keyword query Query optimization Probabilistic topic model Semantic similarity 


  1. 1.
    Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd International Conference on Machine Learning (2006)Google Scholar
  2. 2.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. (2003)Google Scholar
  3. 3.
    Cao, X., Cong, G., Jensen, C.S.: Collective spatial keyword querying. In: SIGMOD (2011)Google Scholar
  4. 4.
    Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing (2002)Google Scholar
  5. 5.
    Chen, L., Cong, G., Jensen, C.S.,Wu, D.: Spatial keyword query processing: an experimental evaluation. In: PVLDB (2013)Google Scholar
  6. 6.
    Chen, L., Lin, X., Hu, H., Jensen, C.S., Xu, J.: Answering why-not questions on spatial keyword top-k queries. In: ICDE (2015)Google Scholar
  7. 7.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial Web objects. In: PVLDB (2009)Google Scholar
  8. 8.
    Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions (2004)Google Scholar
  9. 9.
    De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE (2008)Google Scholar
  10. 10.
    Du, L., Buntine, W., Jin, H.: Sequential latent dirichlet allocation: discover underlying topic structures within a document. In: ICDM (2010)Google Scholar
  11. 11.
    Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys. Acta Informatica (1974)Google Scholar
  12. 12.
    Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via hashing. In: VLDB (1999)Google Scholar
  13. 13.
    Gravano, L., Ipeirotis, P.G., et al.: Approximate string joins in a database (almost) for free. In: VLDB (2001)Google Scholar
  14. 14.
    Guo, L., Shao, J., Aung, H.H., Tan, K.-L.: Efficient continuous top-k spatial keyword queries on road networks. GeoInformatica (2015)Google Scholar
  15. 15.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD (1984)Google Scholar
  16. 16.
    Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998)Google Scholar
  17. 17.
    Hu, B., Jamali, M., Ester, M.: Spatio-temporal topic modeling in mobile social media for location recommendation (2013)Google Scholar
  18. 18.
    Hua, W., Wang, Z., Wang, H., Zheng, K., Zhou, X.: Short text understanding through lexical-semantic analysis. In: ICDE (2015)Google Scholar
  19. 19.
    Jagadish, H.V., Ooi, B.C., Tan, K.-L., et al.: idistance: an adaptive b+-tree based indexing method for nearest neighbor search. ACM TODS (2005)Google Scholar
  20. 20.
    Kim, S., Smyth, P.: Hierarchical dirichlet processes with random effects. In: Advances in Neural Information Processing Systems (2006)Google Scholar
  21. 21.
    Li, F., Yao, B., Tang, M., et al.: Spatial approximate string search. TKDE (2013)Google Scholar
  22. 22.
    Li, G., Feng, J., Xu, J.: Desks: direction-aware spatial keyword search. In: ICDE (2012)Google Scholar
  23. 23.
    Liu, H., Xu, J., Zheng, K., Liu, C., Du, L., Wu, X.: Semantic-aware query processing for activity trajectories. In: WSDM (2017)Google Scholar
  24. 24.
    Liu, Q., Ge, Y., Li, Z., Chen, E., Xiong, H.: Personalized travel package recommendation. In: ICDM (2011)Google Scholar
  25. 25.
    Qian, Z., Xu, J., Zheng, K., Sun, W., Li, Z., Guo, H.: On efficient spatial keyword querying with semantics. In: DASFAA (2016)Google Scholar
  26. 26.
    Rocha-Junior, J.B., Gkorgkas, O., et al.: Efficient processing of top-k spatial keyword queries (2011)Google Scholar
  27. 27.
    Ukkonen, E.: Approximate string-matching with q-grams and maximal matches. Theor. Comput. Sci. (1992)Google Scholar
  28. 28.
    Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., et al.: Sharkdb: an in-memory column-oriented trajectory storage. In: CIKM (2014)Google Scholar
  29. 29.
    Yao, B., Li, F., Hadjieleftheriou, M., Hou, K.: Approximate string search in spatial databases. In: ICDE (2010)Google Scholar
  30. 30.
    Zhang, D., Chan, C.-Y., Tan, K.-L.: Processing spatial keyword query as a top-k aggregation query. In: SIGIR (2014)Google Scholar
  31. 31.
    Zhang, C., Zhang, Y., Zhang, W., Lin, X., et al.: Diversified spatial keyword search on road networks. In: EDBT (2014)Google Scholar
  32. 32.
    Zhao, P., Fang, H., Sheng, V.S., Li, Z., Xu, J., Wu, J., Cui, Z.: Monochromatic and bichromatic ranked reverse boolean spatial keyword nearest neighbors search. In: World Wide Web (2017)Google Scholar
  33. 33.
    Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactive top-k spatial keyword queries. In: ICDE (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Zhihu Qian
    • 1
  • Jiajie Xu
    • 1
  • Kai Zheng
    • 1
  • Pengpeng Zhao
    • 1
  • Xiaofang Zhou
    • 2
    • 1
  1. 1.School of Computer Science and TechnologySoochow UniversitySuzhouChina
  2. 2.School of Information Technology and Electrical EngineeringUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations