Advertisement

World Wide Web

, Volume 21, Issue 2, pp 455–485 | Cite as

SharkDB: an in-memory column-oriented storage for trajectory analysis

  • Bolong Zheng
  • Haozhou Wang
  • Kai Zheng
  • Han Su
  • Kuien Liu
  • Shuo Shang
Article

Abstract

The last decade has witnessed the prevalence of sensor and GPS technologies that produce a high volume of trajectory data representing the motion history of moving objects. However some characteristics of trajectories such as variable lengths and asynchronous sampling rates make it difficult to fit into traditional database systems that are disk-based and tuple-oriented. Motivated by the success of column store and recent development of in-memory databases, we try to explore the potential opportunities of boosting the performance of trajectory data processing by designing a novel trajectory storage within main memory. In contrast to most existing trajectory indexing methods that keep consecutive samples of the same trajectory in the same disk page, we partition the database into frames in which the positions of all moving objects at the same time instant are stored together and aligned in main memory. We found this column-wise storage to be surprisingly well suited for in-memory computing since most frames can be stored in highly compressed form, which is pivotal for increasing the memory throughput and reducing CPU-cache miss. The independence between frames also makes them natural working units when parallelizing data processing on a multi-core environment. Lastly we run a variety of common trajectory queries on both real and synthetic datasets in order to demonstrate advantages and study the limitations of our proposed storage.

Keywords

Spatial database Trajectory In-memory Storage 

Notes

Acknowledgements

This work is partially supported by Natural Science Foundation of China (No. 61502324 and No. 61532018).

References

  1. 1.
    Ammann, A.C., Hanrahan, M., Krishnamurthy, R.: Design of a memory resident DBMS. In: COMPCON, pp 54–58 (1985)Google Scholar
  2. 2.
    Aßfalg, J., Kriegel, H.P., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Similarity search on time series based on threshold queries. In: International Conference on Extending Database Technology, pp. 276–294. Springer (2006)Google Scholar
  3. 3.
    Baulier, J., Bohannon, P., Gogate, S., Gupta, C., Haldar, S.: DataBlitz storage manager: main-memory database performance for critical applications. In: SIGMOD, pp. 519–520 (1999)Google Scholar
  4. 4.
    Bernad, D.: Finding patterns in time series: a dynamic programming approach. Advances in knowledge discovery and data mining (1996)Google Scholar
  5. 5.
    Berndt, D. J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, vol. 10, pp. 359–370. Seattle, WA (1994)Google Scholar
  6. 6.
    Binnig, C., Hildenbrand, S., Färber, F.: Dictionary-based order-preserving string compression for main memory column stores. In: SIGMOD, pp. 283–296 (2009)Google Scholar
  7. 7.
    Bitton, D., Hanrahan, M., Turbyfill, C.: Performance of complex queries in main memory database systems. In: ICDE, pp. 72–81 (1987)Google Scholar
  8. 8.
    Boncz, P.A., Zukowski, M., Nes, N.: Monetdb/X100: hyper-pipelining query execution CIDR, pp 225–237 (2005)Google Scholar
  9. 9.
    Botea, V., Mallett, D., Nascimento, M.A., Sander, J.: PIST: an efficient and practical indexing technique for historical spatio-temporal point data. GeoInformatica 12(2), 143–168 (2008)CrossRefGoogle Scholar
  10. 10.
    Chakka, V.P., Everspaugh, A.C., Patel, J.M.: Indexing large trajectory data sets with SETI. In: CIDR (2003)Google Scholar
  11. 11.
    Chen, L., Ng, R.: On the marriage of Lp-Norms and edit distance. In: Proceedings of the 13th International Conference on Very Large Data Bases-Volume 30. VLDB Endowment (2004), pp 792–803Google Scholar
  12. 12.
    Chen, L., Özsu, M. T., Oria, V.: Robust and fast similarity search for moving object trajectories Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp 491–502. ACM (2005)Google Scholar
  13. 13.
    Cudre-Mauroux, P., Wu, E., Madden, S.: Trajstore: an adaptive storage system for very large trajectory data sets ICDE, pp 109–120 (2010)Google Scholar
  14. 14.
    Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases, vol. 23. ACM (1994)Google Scholar
  15. 15.
    Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: A data model and data structures for moving objects databases, vol. 29. ACM (2000)Google Scholar
  16. 16.
    Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Algorithms for nearest neighbor search on moving object trajectories. Geoinformatica 11(2), 159–193 (2007)CrossRefGoogle Scholar
  17. 17.
    Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: IEEE 23Rd International Conference On Data Engineering, 2007. ICDE 2007, pp 816–825. IEEE (2007)Google Scholar
  18. 18.
    Gawlick, D., Kinkade, D.: Varieties of concurrency control in IMS/VS fast path. DEB 8(2), 3–10 (1985)Google Scholar
  19. 19.
    Gowanlock, M., Casanova, H.: In-memory distance threshold queries on moving object trajectories. In: Proceedings of the 6th International Conference on Advances in Databases, Knowledge, and Data Applications, pp 41–50 (2014)Google Scholar
  20. 20.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching SIGMOD, pp 47–57 (1984)Google Scholar
  21. 21.
    Hadjieleftheriou, M., Kollios, G., Tsotras, V., Gunopulos, D.: Efficient indexing of spatiotemporal objects. Advances in Database Technology—EDBT 2002, 251–268 (2002)zbMATHGoogle Scholar
  22. 22.
    Héman, S., Zukowski, M., Nes, N. J., Sidirourgos, L., Boncz, P.: Positional upyear handling in column stores SIGMOD, pp 543–554 (2010)Google Scholar
  23. 23.
    Ivanova, M.G., Kersten, M.L., Nes, N.J., Gonçalves, R. A.: An architecture for recycling intermediates in a column-store. TODS 35(4), 24:1–24:43 (2010)CrossRefGoogle Scholar
  24. 24.
    Keogh, E.: Exact indexing of dynamic time warping. In: Proceedings of the 28th International Conference on Very Large Data Bases. VLDB Endowment (2002), pp 406–417Google Scholar
  25. 25.
    Knuth, D.E., Morris, J.H, Jr. Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput 6(2), 323–350 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Krueger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Plattner, H., Dubey, P., Zeier, A.: Fast upyears on read-optimized databases using multi-core CPUs. PVLDB 5(1), 61–72 (2011)Google Scholar
  27. 27.
    Lemke, C., Sattler, K.U., Faerber, F., Zeier, A.: Speeding up queries in column stores Dawak, pp 117–129 (2010)Google Scholar
  28. 28.
    Manegold, S., Boncz, P., Kersten, M.L.: Generic database cost models for hierarchical memory systems. In: PVLDB, pp 191–202 (2002)Google Scholar
  29. 29.
    Meratnia, N., By, R.: Spatiotemporal compression techniques for moving point objects EDBT, pp 765–782 (2004)Google Scholar
  30. 30.
    Pfoser, D., Jensen, C.S., Theodoridis, Y., et al.: Novel approaches to the indexing of moving object trajectories. In: Proceedings of VLDB, pp 395–406 (2000)Google Scholar
  31. 31.
    Plattner, H.: A common database approach for OLTP and OLAP using an in-memory column database. In: SIGMOD, pp. 1–2 (2009)Google Scholar
  32. 32.
    Plattner, H.: SanssouciDb: an in-memory database for processing enterprise workloads. In: BTW, vol. 20, pp 2–21 (2011)Google Scholar
  33. 33.
    Rao, J., Ross, K.A.: Making B+- trees cache conscious in main memory. In: SIGMOD, pp 475–486 (2000)Google Scholar
  34. 34.
    Rasetic, S., Sander, J., Elding, J., Nascimento, M.A.: A trajectory splitting model for efficient spatio-temporal indexing. In: Proceedings of VLDB, pp 934–945 (2005)Google Scholar
  35. 35.
    Setton, E., Girod, B.: Video streaming with Sp and Si frames Visual Communications and Image Processing 2005. International Society for Optics and Photonics (2005), pp 59,606F–59,606FGoogle Scholar
  36. 36.
    Simonas Saltenis, C.S. J., Leutenegger, S. T., Lopez, M. A.: Indexing the positions of continuously moving objects. In: SIGMOD, pp 331–342 (2000)Google Scholar
  37. 37.
    Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-store: a column-oriented DBMS VLDB, pp 553–564 (2005)Google Scholar
  38. 38.
    Su, H., Zheng, K., Wang, H., Huang, J., Zhou, X.: Calibrating trajectory data for similarity-based analysis. In: SIGMOD, pp 833–844 (2013)Google Scholar
  39. 39.
    Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access method for predictive queries PVLDB, pp 790–801 (2003)Google Scholar
  40. 40.
    Vlachos, M., Gunopulos, D., Kollios, G.: Robust similarity measures for mobile object trajectories. In: Proceedings of the 13Th International Workshop On Database and Expert Systems Applications, 2002, pp 721–726. IEEE (2002)Google Scholar
  41. 41.
    Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering, 2002, pp 673–684. IEEE (2002)Google Scholar
  42. 42.
    Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., Sadiq, S.: SharkDB: an in-memory column-oriented trajectory storage. In: CIKM, pp 1409–1418 (2014)Google Scholar
  43. 43.
    Yi, B.K., Jagadish, H., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: Proceedings of the 14th International Conference on Data Engineering, 1998, pp 201–208. IEEE (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Bolong Zheng
    • 1
  • Haozhou Wang
    • 2
  • Kai Zheng
    • 3
  • Han Su
    • 4
  • Kuien Liu
    • 2
  • Shuo Shang
    • 5
  1. 1.The University of QueenslandBrisbaneAustralia
  2. 2.Pivotal IncorporatedSan FranciscoUSA
  3. 3.School of Computer Science and TechonologySoochow UniversitySuzhouChina
  4. 4.Big Data Research Center, University of Electronic Science and Technology of ChinaChengduChina
  5. 5.King Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations