World Wide Web

, Volume 21, Issue 1, pp 185–200 | Cite as

Trustworthy service composition with secure data transmission in sensor networks

  • Tao Zhang
  • Lele Zheng
  • Yongzhi Wang
  • Yulong Shen
  • Ning Xi
  • Jianfeng Ma
  • Jianming Yong
Part of the following topical collections:
  1. Special Issue on Security and Privacy of IoT


As the basis of the Internet of Things (IoT), sensor networks have materialized its computation and communication capability into anything in our modern lives. Service composition provides us a promising way to cooperate various sensors to build more powerful IoT applications over sensor networks. However, the limited capability of sensor node poses great challenges not only to trustworthy service composition but also to secure data aggregation. The complex composite structure, computation-intensive evaluation, and massive data transmission become burdens for service composition in sensor networks. To overcome these issues, this paper proposes a distributed approach to enable efficient trustworthy service composition with secure data transmission in sensor networks. By analyzing dependency relationships, the rules for computing service trust and data trust are proposed based a multi-level trust model. Then, each target component service can be evaluated independently through a model checker. Moreover, an identity-based aggregate signature is introduced in the composite evaluation to guarantee the secure data transmission among different components. The experimental results show that our approach not only achieves efficient trustworthy service composition with complex invocation structures, but also reduces the costs in the secure data transmission.


Service composition Data transmission Trust Security Sensor networks 



We wish to thank the anonymous reviewers for their highly valuable and constructive comments. This paper is supported by the National Natural Science Foundation of China (No. 61602365, U1536202, 61571352, 61373173 and 61602364), the Open Fund of the Chinese Key Laboratory of the Grain Information Processing and Control (No. KFJJ-2015-202), and the Fundamental Research Funds for the Central Universities (No. XJS15075).


  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Comput. Netw. 54(15), 2787 – 2805 (2010). doi: 10.1016/j.comnet.2010.05.010 CrossRefzbMATHGoogle Scholar
  2. 2.
    Boyle, D.E., Yates, D.C., Yeatman, E.M.: Urban sensor data streams: London 2013. IEEE Internet Comput. 17(6), 12–20 (2013). doi: 10.1109/MIC.2013.85 CrossRefGoogle Scholar
  3. 3.
    Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997). doi: 10.1109/32.588521 CrossRefGoogle Scholar
  4. 4.
    Huang, J., Peng, M., Wang, H., Cao, J., Gao, W., Zhang, X.: A probabilistic method for emerging topic tracking in microblog stream. World Wide Web 20(2), 325–350 (2017). doi: 10.1007/s11280-016-0390-4 CrossRefGoogle Scholar
  5. 5.
    Hutter, D., Volkamer, M.: Information flow control to secure dynamic web service composition, pp 196–210. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)Google Scholar
  6. 6.
    Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decis. Support. Syst. 43(2), 618 – 644 (2007). doi: 10.1016/j.dss.2005.05.019 CrossRefGoogle Scholar
  7. 7.
    Kyusakov, R., Eliasson, J., Delsing, J., Van Deventer, J., Gustafsson, J.: Integration of wireless sensor and actuator nodes with it infrastructure using service-oriented architecture. IEEE Trans. Indust. Inform. 9(1), 43–51 (2013). doi: 10.1109/TII.2012.2198655 CrossRefGoogle Scholar
  8. 8.
    Li, L., Wang, Y.: Trust evaluation in composite services selection and discovery SCC, pp 482–485 (2009). doi: 10.1109/SCC.2009.70 Google Scholar
  9. 9.
    Liang, X., Li, X., Lu, R., Lin, X., Shen, X.: Seer: A secure and efficient service review system for service-oriented mobile social networks. In: 2012 IEEE 32nd International Conference on Distributed Computing Systems (ICDCS), pp. 647–656 (2012). doi: 10.1109/ICDCS.2012.46
  10. 10.
    Liu, X., Zhu, H., Ma, J., Li, Q., Xiong, J.: Efficient attribute based sequential aggregate signature for wireless sensor networks. Int. J. Sensor Netw. 16(3), 172–184 (2014)CrossRefGoogle Scholar
  11. 11.
    Malik, Z., Bouguettaya, A.: Rateweb: Reputation assessment for trust establishment among web services. VLDB J. 18(4), 885–911 (2009)CrossRefGoogle Scholar
  12. 12.
    Shen, L., Ma, J., Liu, X., Wei, F., Miao, M.: A secure and efficient id-based aggregate signature scheme for wireless sensor networks. IEEE Internet Things J. PP(99), 1–1 (2016). doi: 10.1109/JIOT.2016.2557487 Google Scholar
  13. 13.
    Sherchan, W., Nepal, S., Paris, C.: A survey of trust in social networks. ACM Comput. Surv. 45(4), 47:1–47:33 (2013). doi: 10.1145/2501654.2501661 CrossRefGoogle Scholar
  14. 14.
    Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence graphs for software safety analysis. ACM Trans. Softw. Eng. Methodol. 15(4), 410–457 (2006). doi: 10.1145/1178625.1178628 CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Li, L.: Two-dimensional trust rating aggregations in service-oriented applications. IEEE Trans. Serv. Comput. 4(4), 257–271 (2011). doi: 10.1109/TSC.2010.39 CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Lin, K.J.: Reputation-oriented trustworthy computing in e-commerce environments. IEEE Internet Comput. 12(4), 55–59 (2008). doi: 10.1109/MIC.2008.84 CrossRefGoogle Scholar
  17. 17.
    Xi, N., Ma, J., Sun, C., Zhang, T.: Decentralized information flow verification framework for the service chain composition in mobile computing environments. In: 2013 IEEE 20th International Conference on Web Services (ICWS), pp. 563–570 (2013). doi: 10.1109/ICWS.2013.81
  18. 18.
    Xi, N., Sun, C., Ma, J., Shen, Y.: Secure service composition with information flow control in service clouds. Futur. Gener. Comput. Syst. 49, 142 – 148 (2015). doi: 10.1016/j.future.2014.12.009 CrossRefGoogle Scholar
  19. 19.
    Yan, Z., Zhang, P., Vasilakos, A.V.: A survey on trust management for internet of things. J. Netw. Comput. Appl. 42, 120 – 134 (2014). doi: 10.1016/j.jnca.2014.01.014 CrossRefGoogle Scholar
  20. 20.
    Yang, P., Yang, Z., Lu, S.: Formal modeling and analysis of scientific workflows using hierarchical state machines. In: IEEE International Conference on e-Science and Grid Computing. doi: 10.1109/E-SCIENCE.2007.35 (2007)
  21. 21.
    Yu, H., Shen, Z., Leung, C., Miao, C., Lesser, V.R.: A survey of multi-agent trust management systems. IEEE Access 1, 35–50 (2013). doi: 10.1109/ACCESS.2013.2259892 CrossRefGoogle Scholar
  22. 22.
    Zhang, T., Ma, J., Li, Q., Xi, N., Sun, C.: Trust-based service composition in multi-domain environments under time constraint. Sci. China Inf. Sci. 57(9), 1–16 (2014). doi: 10.1007/s11432-014-5104-x Google Scholar
  23. 23.
    Zhang, T., Ma, J., Sun, C., Li, Q., Xi, N.: Service composition in multi-domain environment under time constraint. In: ICWS, pp. 227–234 (2013). doi: 10.1109/ICWS.2013.39
  24. 24.
    Zhang, T., Ma, J., Xi, N., Liu, X., Liu, Z., Xiong, J.: Trustworthy service composition in service-oriented mobile social networks. In: 2014 IEEE International Conference on Web Services (ICWS), pp. 684–687 (2014). doi: 10.1109/ICWS.2014.102

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tao Zhang
    • 1
  • Lele Zheng
    • 1
  • Yongzhi Wang
    • 1
  • Yulong Shen
    • 1
  • Ning Xi
    • 1
  • Jianfeng Ma
    • 1
  • Jianming Yong
    • 2
  1. 1.School of Computer Science and TechnologyXidian UniversityXidianChina
  2. 2.School of Management and EnterpriseUniversity of Southern QueenslandToowoombaAustralia

Personalised recommendations