World Wide Web

, Volume 19, Issue 5, pp 921–932 | Cite as

Web prefetching through efficient prediction by partial matching

Article

Abstract

In this work we propose a prediction by partial matching technique to anticipate and prefetch web pages and files accessed via browsers. The goal is to reduce the delays necessary to load the web pages and files visited by the users. Since the number of visited web pages can be high, tree-based and table-based implementations can be inefficient from the representation point of view. Therefore, we present an efficient way to implement the prediction by partial matching as simple searches in the observation sequence. Thus, we can use high number of states in long web page access histories and higher order Markov chains at low complexity. The time-evaluations show that the proposed PPM implementation is significantly more efficient than previous implementations. We have enhanced the predictor with a confidence mechanism, implemented as saturating counters, which classifies dynamically web pages as predictable or unpredictable. Predictions are generated selectively only from web pages classified as predictable, improving thus the accuracy. The experiments show that the prediction by partial matching of order 4 with a history of 500 web pages is the optimal.

Keywords

Web page prediction Prefetching Markov chains Prediction by partial matching Browser extension 

References

  1. 1.
    Ban, Z., Gu, Z., Jin, Y.: An online PPM prediction model for web prefetching. The 9th ACM International Workshop on Web Information and Data Management, pp. 89–96. Lisboa (2007)Google Scholar
  2. 2.
    Canali, C., Colajanni, M., Lancellotti, R.: Adaptive algorithms for efficient content management in social network services. 10th International Conference on Computer and Information Technology, pp. 68–75. (2010)Google Scholar
  3. 3.
    Ciobanu, D., Dinuca, C.E.: Predicting the next page that will be visited by a web surfer using page rank algorithm. Int. J. Comput. Commun. 6(1), 60–67 (2012)Google Scholar
  4. 4.
    Cleary, J., Witten, I.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)CrossRefGoogle Scholar
  5. 5.
    Cunha, C.A., Bestavros, A., Crovella, M.E.: Characteristics of WWW client traces. Technical report TR-95-010. Boston University, Department of Computer Science (1995)Google Scholar
  6. 6.
    Deshpande, M., Karypis, G.: Selective Markov models for predicting web-page accesses. ACM Trans. Internet Technol. 4(2), 163–184 (2004)CrossRefGoogle Scholar
  7. 7.
    Domènech, J., Pont, A., Sahuquillo, J., Gil, J.A.: An experimental framework for testing web prefetching techniques. The 30th EUROMICRO Conference, pp. 214–221. (2004)Google Scholar
  8. 8.
    Domènech, J., Sahuquillo, J., Pont, A., Gil, J.A.: How current web generation affects prediction algorithms performance. Proceedings of SoftCOM International Conference on Software, Telecommunications and Computer Networks. Split, Croatia (2005)Google Scholar
  9. 9.
    Dubey, S., Mishra, N.: Web page prediction using hybrid model. Int J Comput Sci Eng 3(5), 2170–2176 (2011)Google Scholar
  10. 10.
    Gellert, A., Florea, A.: Investigating a New design pattern for efficient implementation of prediction algorithms. J. Digit. Inf. Manag. 11(5), 366–377 (2013)Google Scholar
  11. 11.
    Gellert, A., Florea, A.: Web page prediction enhanced with confidence mechanism. J Web Eng 13(5–6), 507–524 (2014)Google Scholar
  12. 12.
    Guo, Y.Z., Ramamohanarao, K., Park, L.A.F.: Web page prediction based on conditional random fields. The 18th European Conference on Artificial Intelligence, pp. 251–255. (2008)Google Scholar
  13. 13.
    Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. Proceedings of SDM 06 Workshop on Link Analysis, Counterterrorism and Security. Bethesda (2006)Google Scholar
  14. 14.
    Huang, Q., Yang, Q., Huang, J.Z., Ng, M.K.: Mining of Web-Page Visiting Patterns with Continuous-Time Markov Models, pp. 549–558. Springer-Verlag, Berlin Heidelberg (2004)Google Scholar
  15. 15.
    Huang, Z.: Link prediction based on graph topology: the predictive value of generalized clustering coefficient. Proceedings of the Workshop on Link Analysis: Dynamics and Static of Large Networks. Philadelphia (2006)Google Scholar
  16. 16.
    Jin, X., Xu, H.: An approach to intelligent web pre-fetching based on hidden Markov model. Proceedings of the 42nd Conference on Decision and Control, vol. 3, pp. 2954–2958. Maui (2003)Google Scholar
  17. 17.
    Kaushal, P.: Hybrid Markov model for better prediction of web page. IJSRP. 2(8), (2012)Google Scholar
  18. 18.
    Khalil, F., Li, J., Wang, H.: Integrating recommendation models for improved web page prediction accuracy. Proceedings of the 31st Australasian Conference on Computer Science, vol. 74, pp. 91–100. (2008)Google Scholar
  19. 19.
    Khalil, F., Li, J., Wang, H.: An integrated model for next page access prediction. IJKWI 1(1/2), 48–80 (2009)CrossRefGoogle Scholar
  20. 20.
    Khanchana, R., Punithavalli, M.: Web page prediction for web personalization: a review. GJCST 11(7), 39–44 (2011)Google Scholar
  21. 21.
    Lee, J., Shi, Y., Wang, F., Lee, H., Kim, H.K.: Advertisement Clicking Prediction by Using Multiple Criteria Mathematical Programming. WWWJ (2015). doi:10.1007/s11280-015-0353-1 Google Scholar
  22. 22.
    Murata, T., Moriyasu, S.: Link prediction of social networks based on weighted proximity measures. IEEE/WIC/ACM International Conference on Web Intelligence, pp. 85–88. (2007)Google Scholar
  23. 23.
    Palpanas, T., Mendelzon, A.: Web prefetching using partial match prediction. Proceedings of the 4th International Web Caching Workshop. San Diego (1999)Google Scholar
  24. 24.
    Pitkow, J., Pirolli, P.: Mining longest repeating subsequences to predict World Wide Web surfing. The 2nd USENIX Symposium on Internet Technologies & Systems, vol. 2, pp. 11–14. Boulder (1999)Google Scholar
  25. 25.
    Singhai, N., Nigam, R.K.: A novel technique to predict oftenly used web pages from usage patterns. IJETTCS 1(4), 49–55 (2012)Google Scholar
  26. 26.
    Su, Z., Yang, Q., Zhang, H. J.: A prediction system for multimedia pre-fetching in internet. Proceedings of the eighth ACM international conference on Multimedia, pp. 3–11. New York (2000)Google Scholar
  27. 27.
    Temgire, S., Gupta, P.: Review on web prefetching techniques. IJTEEE 1(4), 100–105 (2013)Google Scholar
  28. 28.
    Wan, M., Jönsson, A., Wang, C., Li, L., Yang, Y.: Web user clustering and web prefetching using random indexing with weight functions. Knowl. Inf. Syst. 33(1), 89–115 (2012)CrossRefGoogle Scholar
  29. 29.
    Wu, Y.-H., Chen, A.L.P.: Prediction of web page accesses by proxy server log. WWWJ 5(1), 67–88 (2002). doi:10.1023/A:1015750423727 CrossRefMATHGoogle Scholar
  30. 30.
    Zheng, Z., Wei, W., Liu, C., Cao, W., Cao, L., Bhatia, M.: An Effective Contrast Sequential Pattern Mining Approach to Taxpayer Behavior Analysis. WWWJ (2015). doi:10.1007/s11280-015-0350-4 Google Scholar
  31. 31.
    Zhu, J., Hong, J., Hughes, J.G.: Using Markov Chains for Link Prediction in Adaptive Web Sites, pp. 60–73. Springer, Berlin Heidelberg (2002)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Computer Science and Electrical Engineering DepartmentLucian Blaga University of SibiuSibiuRomania

Personalised recommendations