World Wide Web

, Volume 19, Issue 2, pp 217–229 | Cite as

Feature aggregating hashing for image copy detection

  • Lingyu Yan
  • Fuhao Zou
  • Rui GuoEmail author
  • Lianli Gao
  • Ke Zhou
  • Chunzhi Wang


Currently, research on content based image copy detection mainly focuses on robust feature extraction. However, due to the exponential growth of online images, it is necessary to consider searching among large scale images, which is very time-consuming and unscalable. Hence, we need to pay much attention to the efficiency of image detection. In this paper, we propose a fast feature aggregating method for image copy detection which uses machine learning based hashing to achieve fast feature aggregation. Since the machine learning based hashing effectively preserves neighborhood structure of data, it yields visual words with strong discriminability. Furthermore, the generated binary codes leads image representation building to be of low-complexity, making it efficient and scalable to large scale databases. Experimental results show good performance of our approach.


Image copy detection Visual words Feature aggregation Machine learning base hashing 



Thanks for the funding supported by the National Natural Science Foundation of China (No. 61170135, No. 61202287, No.61440024), and the General Program for Natural Science Foundation of Hubei Province in China(No.2013CFB020, No. 2014CFB590), and Natural Science Foundation of Hubei University of Technology(No. BSQD13039).


  1. 1.
    Berrani, S. A., Amsaleg, L., Gros, P.: Robust content-based image searches for copyright protection. Int. Workshop Multimed. Databases, 70–77 (2003)Google Scholar
  2. 2.
    Cai, D., Xiaofei, H., Jiawei, H.: SRDA: An efficient algorithm for large-scale discriminant analysis. IEEE Trans. Knowl. Data Eng. 20(1), 1–12 (2008)CrossRefGoogle Scholar
  3. 3.
    Foo, J.J., Sinha, R.: Pruning sift for scalable near-duplicate image matching. In: Proceedings of the Eighteenth Conference on Australasian Database, pp. 63–71 (2007)Google Scholar
  4. 4.
    Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: Proceedings of the IEEE Computer Conference on Computer Vision and Pattern Recognition, pp. 817–824 (2011)Google Scholar
  5. 5.
    Han, Y, Wu, F., Tian, Q., Zhuang, Y.: Image annotation by input-output structural grouping sparsity. IEEE Trans. Image Process. 21(6), 3066–3079 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Han, Y., Wu, F., Tao, D., Shao, J., Zhuang, Y., Jiang, J.: Sparse unsupervised dimensionality reduction for multiple view data. IEEE Trans. Circ. Syst. Video Technol. 22(10), 1485–1496 (2012)CrossRefGoogle Scholar
  7. 7.
    Han, Y., Yang, Y., Zhou, X.: Co-regularized ensemble for feature selection. Int. Joint Conf. Artif. Intell., 2013 (2013)Google Scholar
  8. 8.
    Han, Y., Yang, Y., Yan, Y., Ma, Z., Sebe, N., Zhou, X.: Semi-supervised feature selection via spline regression for video semantic recognition. IEEE Trans. Neural Netw. Learn. Syst. (IEEE T-NNLS) 26(2), 252–264 (2015)CrossRefGoogle Scholar
  9. 9.
    Jegou, H., Perronnin, F., Douze, M., et al.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell., 1704–1716 (2012)Google Scholar
  10. 10.
    Ke, Y., Sukthankar, R., Huston Larry, L.: Efficient near-duplicate and subimage retrieval. ACM Multimed, 869–876 (2004)Google Scholar
  11. 11.
    Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2130–2137 (2009)Google Scholar
  12. 12.
    Kokiopoulou, E., Chen, J., Saad, Y.: Trace optimization and eigenproblems in dimension reduction methods. Numer. Linear Algebra Appl. 18(3), 565–602 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Li, P., Wang, M., Cheng, J., Xu, C., Lu, H.: Spectral hashing with semantically consistent graph for image indexing. IEEE Trans Multimed 15(1), 141–152 (2013)CrossRefGoogle Scholar
  14. 14.
    Poullot, S., Crucianu, M., Buisson, O.: Scalable mining of large video databases using copy detection. ACM Multimed, 61–70 (2008)Google Scholar
  15. 15.
    Tang, Z., Wang, S., Zhang, X., Wei, W., Su, S.: Robust image hashing for tamper detection using non-negative matrix factorization. J. Ubiquitous Convergence Technol 2(1), 18–26 (2008)Google Scholar
  16. 16.
    Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. Adv. Neural Inf. Process. Syst, 1753–1760 (2009)Google Scholar
  17. 17.
    Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Proceedings of the 2008 Conference Advances in Neural Information Processing Systems, pp. 1753–1760 (2009)Google Scholar
  18. 18.
    Yan, Y., Liu, G., Wang, S., Zhang, J., Zheng, K.: Graph-based clustering and ranking for diversified image search. Multimed. Systemsation. doi: 10.1007/s00530-014-0419-4 (2014)
  19. 19.
    Yang, Y., Nie, F., Xu, D., Luo, J., Zhuang, Y., Pan, Y.: A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 34(5), 723–742 (2012)CrossRefGoogle Scholar
  20. 20.
    Yang, Y., Ma, Z., Xu, Z., Yan, S., Hauptmann, A.: How related exemplars help complex event detection in web videos? In: Proceedings of the 2013 IEEE International Conference on Computer Vision, pp. 1–8 (2013)Google Scholar
  21. 21.
    Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.: Multi-class active learning by uncertainty sampling with diversity maximization. Int. J. Comput. Vis. (IJCV). doi: 10.1007/s11263-014-0781-x (2014)
  22. 22.
    Zhang, D., Wang, J., Cai, D., Lu, J.: Self-taught hashing for fast similarity search. In: Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 18–25 (2010)Google Scholar
  23. 23.
    Zou, F., Feng, H., Ling, H., Liu, C., Lingyuyan, Li, P., Li, D.: Nonnegative sparse coding induced hashing for image copy detection. Neurocomputing (Elsevier Academic Press) 105(1), 81C89 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lingyu Yan
    • 1
  • Fuhao Zou
    • 2
  • Rui Guo
    • 3
    Email author
  • Lianli Gao
    • 4
  • Ke Zhou
    • 5
  • Chunzhi Wang
    • 1
  1. 1.School of Computer ScienceHubei University of TechnologyWuhanChina
  2. 2.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  3. 3.School of ComputerSoutheast UniversityNanjingChina
  4. 4.School of ComputerUniversity of Electronic Science and Technology of ChinaHefeiChina
  5. 5.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations