Advertisement

World Wide Web

, Volume 18, Issue 5, pp 1373–1390 | Cite as

Detecting overlapping communities in poly-relational networks

  • Zhiang Wu
  • Jie Cao
  • Guixiang Zhu
  • Wenpeng Yin
  • Alfredo Cuzzocrea
  • Jin Shi
Article

Abstract

Discovering communities can promote the understanding of the structure, function and evolution in various systems. Overlapping community detection in poly-relational networks has gained much more interests in recent years, due to the fact that poly-relational networks and communities with pervasive overlap are prevalent in the real world. A plethora of methods detect communities from the poly-relational network by converting it to mono-relational networks first. Nevertheless, they commonly assume different relations are independent from each other, which is obviously unreal to real-life cases. In this paper, we attempt to relax this strong assumption by introducing a novel co-ranking framework, named MutuRank. It makes full use of the mutual influence between relations and actors to transform the poly-relational network to the mono-relational network. We then present a novel GMM-NK (Gaussian Mixture Model with Neighbor Knowledge) algorithm incorporating the impact from neighbors into the traditional GMM. Experimental results both on synthetic networks and the real-world network have verified the effectiveness of MutuRank and GMM-NK.

Keywords

Social networks Community detection Poly-relational networks MutuRank Gaussian mixture model 

Notes

Acknowledgments

This research was partially supported by National Natural Science Foundation of China under Grants 61103229, 71372188 and 61100197, National Center for International Joint Research on E-Business Information Processing under Grant 2013B01035, National Key Technologies R&D Program of China under Grant 2013BAH16F01, Industry Projects in Jiangsu S&T Pillar Program under Grant BE2014141, Key Project of Natural Science Research in Jiangsu Provincial Colleges and Universities under Grants 12KJA520001 and 14KJA520001, National Soft Science Research Program under Grant 2013GXS4B081 and the Natural Science Foundation of Jiangsu Province of China under Grant BK2012863.

References

  1. 1.
    Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear programming and network flows. John Wiley & Sons, New York (2011)Google Scholar
  2. 2.
    Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: Multidimensional networks: foundations of structural analysis. World Wide Web 16(5–6), 567–593 (2013)CrossRefGoogle Scholar
  3. 3.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Statistical Mechanics: Theory and Experiment 10, P10,008 (2008)Google Scholar
  4. 4.
    Cai, D., Shao, Z., He, X., Yan, X., Han, J.: Community mining from multi-relational networks. In: Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp 445–452. Springer, Berlin Heidelberg (2005)Google Scholar
  5. 5.
    Cao, J., Wu, Z., Wu, J., Xiong, H.: SAIL: Summation-based incremental learning for information-theoretic text clustering. IEEE Trans. Cybern. 43(2), 570–584 (2013)CrossRefGoogle Scholar
  6. 6.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fu, Q., Banerjee, A.: Multiplicative mixture models for overlapping clustering. In: Proceedings of 8th IEEE International Conference on Data Mining, pp. 791–796. IEEE (2008)Google Scholar
  8. 8.
    Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016,107 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kellogg, R.: Uniqueness in the schauder fixed point theorem. Proc. Am. Math. Soc. 60(1), 207–210 (1976)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Systems Technical Journal 49(2), 291–307 (1970)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using probabilistic matrix factorization. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 931–940. ACM (2008)Google Scholar
  13. 13.
    Modani, N., Nagar, S., Shannigrahi, S., Gupta, R., Dey, K., Goyal, S., Nanavati, A.: Like-minded communities: bringing the familiarity and similarity together. World Wide Web 17(5), 899–919 (2014)CrossRefGoogle Scholar
  14. 14.
    Musial, K., Budka, M., Juszczyszyn, K.: Creation and growth of online social network. World Wide Web 16(4), 422–477 (2013)CrossRefGoogle Scholar
  15. 15.
    Newman, M.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066,113 (2004)CrossRefGoogle Scholar
  16. 16.
    Ng, M., Li, X., Ye, Y.: Multirank: co-ranking for objects and relations in multi-relational data. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1217–1225. ACM (2011)Google Scholar
  17. 17.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Tech. Rep. SIDL-WP-1999-0120, Stanford InfoLab (1999)Google Scholar
  18. 18.
    Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)CrossRefGoogle Scholar
  19. 19.
    Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Min. Knowl. Disc. 24(3), 515–554 (2012)CrossRefGoogle Scholar
  20. 20.
    Qian, T., Li, Q., Srivastava, J., Peng, Z., Yang Y., Wang, S.: Exploiting small world property for network clustering. World Wide Web 17(3), 405–425 (2014)CrossRefGoogle Scholar
  21. 21.
    Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks . Phys. Rev. E 76(3), 036,106 (2007)CrossRefGoogle Scholar
  22. 22.
    Rahimian, F., Payberah, A., Girdzijauskas, S., Jelasity, M., Haridi, S.: Ja-be-ja: A distributed algorithm for balanced graph partitioning. Tech. rep., Swedish Institute of Computer Science (2013)Google Scholar
  23. 23.
    Rodriguez, M., Shinavier, J.: Exposing multi-relational networks to single-relational network analysis algorithms . J. Informetrics 4(1), 29–41 (2010)CrossRefGoogle Scholar
  24. 24.
    Szell, M., Lambiotte, R., Thurner, S.: Multirelational organization of large-scale social networks in an online world. Proc. Natl. Acad. Sci. 107(3), 13,636–13,641 (2010)CrossRefGoogle Scholar
  25. 25.
    Tang, J., Gao, H., Liu, H.: mtrust: discerning multi-faceted trust in a connected world. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining, pp. 93–102. ACM (2012)Google Scholar
  26. 26.
    Tang, J., Yao, L., Zhang, D., Zhang, J.: A combination approach to web user profiling. ACM Trans. Knowl. Disc. from Data (TKDD) 5(1), 2 (2010)Google Scholar
  27. 27.
    Tang, L., Liu, H.: Relational learning via latent social dimensions. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 817–826. ACM (2009)Google Scholar
  28. 28.
    Tang, L., Liu, H., Zhang, J.: Identifying evolving groups in dynamic multimode networks. IEEE Trans. Knowl. and Data Eng. 24(1), 72–85 (2012)CrossRefGoogle Scholar
  29. 29.
    Tang, L., Wang, X., Liu, H.: Community detection via heterogeneous interaction analysis. Data Min. Knowl. Disc. 25(1), 1–33 (2012)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Wang, Y., Liu, H., Lin, H., Wu, J., Wu, Z., Cao, J.: SEA: a system for event analysis on chinese tweets. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1498–1501. ACM (2013)Google Scholar
  31. 31.
    Wei, F., Qian, W., Wang, C., Zhou, A.: Detecting overlapping community structures in networks. World Wide Web 12(2), 235–261 (2009)CrossRefGoogle Scholar
  32. 32.
    Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state of the art and comparative study. ACM Comput. Surv. 45(4) (2013)Google Scholar
  33. 33.
    Yang, B., Liu, J., Feng, J.: On the spectral characterization and scalable mining of network communities. IEEE Trans. Knowl. Data Eng. 24(2), 326–337 (2012)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Yang, J., Fung, G., Lu, W., Zhou, X., Chen, H., Du, X.: Finding superior skyline points for multidimensional recommendation applications. World Wide Web 15(1), 33–60 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zhiang Wu
    • 1
  • Jie Cao
    • 1
  • Guixiang Zhu
    • 1
  • Wenpeng Yin
    • 2
  • Alfredo Cuzzocrea
    • 3
  • Jin Shi
    • 4
  1. 1.Jiangsu Provincial Key Laboratory of E-BusinessNanjing University of Finance and EconomicsNanjingChina
  2. 2.University of MunichMunichGermany
  3. 3.Institute of High Performance Computing and NetworkingItalian National Research CouncilRomeItaly
  4. 4.School of Information ManagementNanjing UniversityNanjingChina

Personalised recommendations