World Wide Web

, Volume 19, Issue 1, pp 135–155 | Cite as

Anonymizing multimedia documents

  • Bechara Al Bouna
  • Eliana J. Raad
  • Richard Chbeir
  • Charbel Elia
  • Ramzi Haraty


Multimedia documents sharing and outsourcing have become part of the routine activity of many individuals and companies. Such data sharing puts at risk the privacy of individuals, whose identities need to be kept secret, when adversaries get the ability to associate the multimedia document’s content to possible trail of information left behind by the individual. In this paper, we propose de-linkability, a privacy-preserving constraint to bound the amount of information outsourced that can be used to re-identify individuals. We provide a sanitizing M D -algorithm to enforce de-linkability along with a utility function to evaluate the utility of multimedia documents that is preserved after the sanitizing process. A set of experiments are elaborated to demonstrate the efficiency of our technique.


Data privacy Anonymity De-linkability Multimedia document 



This study is funded by the Lebanese CNRS Research Grant Program NCSR project 506 fund 1003. It is also partly funded by the CEDRE research collaboration program, project AO 2011, entitled: Easy Search and Partitioning of Visual Multimedia Data Repositories, jointly funded by the French CNRS (National Center for Scientific Research)


  1. 1.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K. : Analyzing user modeling on twitter for personalized news recommendations. In: Konstan, J. , Conejo, R. , Marzo, J., Oliver, N. (eds.) User Modeling, Adaption and Personalization, volume 6787 of Lecture Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg (2011)Google Scholar
  2. 2.
    Al Bouna, B., Chbeir, R., Marrara, S.: A multimedia access control language for virtual and ambient intelligence environments. In: Proceedings of the 2007 ACM workshop on Secure web services, SWS ’07, pages 111–120, New York, NY, USA, ACM (2007)Google Scholar
  3. 3.
    Al Bouna, B., Raad, E.J., Elia, C., Chbeir, R., Haraty, R.: De-linkability: A privacy-preserving constraint for safely outsourcing multimedia documents. In: Proceedings of the Fifth International Conference on Management of Emergent Digital EcoSystems, MEDES ’13, pages 68–75, New York, NY, USA, ACM (2013)Google Scholar
  4. 4.
    Bouna, B.A., Chbeir, R., Gabillon, A.: The image protector - a flexible security rule specification toolkit. In: SECRYPT, 345–350 (2011)Google Scholar
  5. 5.
    Boyle, M., Edwards, C., Greenberg, S.: The effects of filtered video on awareness and privacy. In: CSCW, pages 1–10, Philadelphia, Pennsylvania, ACM (2000)Google Scholar
  6. 6.
    Chakaravarthy, V.T., Gupta, H., Roy, P., Mohania, M.K.: Efficient techniques for document sanitization. In: Proceedings of the 17th ACM conference on Information and knowledge management, CIKM ’08, pages 843–852, New York, NY, USA, ACM (2008)Google Scholar
  7. 7.
    Chow, R., Golle, P., Staddon, J.: Detecting privacy leaks using corpus-based association rules. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’08, pages 893–901, New York, NY, USA, ACM (2008)Google Scholar
  8. 8.
    Chun, B.T., Bae, Y., Kim, T.-Y.: A method for original image recovery for caption areas in video. In: Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Conference Proceedings. 1999 IEEE International Conference on, volume 2, pages 930–935 (1999)Google Scholar
  9. 9.
    Criminisi, A. , Perez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. Image Process., IEEE Trans. on 13(9), 1200–1212 (2004)CrossRefGoogle Scholar
  10. 10.
    Dwork, C.: Differential privacy. In: ICALP (2), pages 1–12 (2006)Google Scholar
  11. 11.
    Fan, J., Luo, H., Hacid, M.-S., Bertino, E.: A novel approach for privacy-preserving video sharing. In: CIKM, pages 609–616, Bremen, Germany, ACM (2005)Google Scholar
  12. 12.
    Geng, L., You, Y., Wang, Y., Liu, H. : Privacy measures for free text documents: Bridging the gap between theory and practice. In: TrustBus, pages 161–173 (2011)Google Scholar
  13. 13.
    Gessiou, E., Vu, Q.H., Irild, S.: Ioannidis: An information retrieval based method for information leak detection. In: Computer Network Defense (EC2ND), 2011 Seventh European Conference on 33–40 (2011)Google Scholar
  14. 14.
    Huang, J., Ertekin, S., Giles, C.L.: Efficient name disambiguation for large-scale databases. In: PKDD, pages 536–544. Springer-Verlag (2006)Google Scholar
  15. 15.
    Komodakis, N.: Image completion using global optimization. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 442–452, june (2006)Google Scholar
  16. 16.
    LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: Proceedings of the 22Nd International Conference on Data Engineering, ICDE ’06, pages 25–, Washington, DC, USA, IEEE Computer Society (2006)Google Scholar
  17. 17.
    Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE, pages 106–115 (2007)Google Scholar
  18. 18.
    Ma, R., Meng, X., Wang, Z.: Preserving privacy on the searchable internet. In: iiWAS, pages 238–245 (2011)Google Scholar
  19. 19.
    Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. In: Data Engineering, 2006. ICDE ’06. Proceedings of the 22nd International Conference on, pages 24–24 (2006)Google Scholar
  20. 20.
    Malin, B.: Trail Re-identification and Unlinkability in Distributed Databases. PhD thesis, Carnegie Mellon University (2006)Google Scholar
  21. 21.
    Martin, N.F., England, J.W.: Mathematical theory of entropy, vol. 12. Cambridge University Press, Cambridge (2011)Google Scholar
  22. 22.
    Mori, J. , Matsuo, Y. , Ishizuka, M.: Finding user semantics on the web using word co-occurrence information. In: Proceedings of the International Workshop on Personalization on the Semantic Web (PersWeb05) (2005)Google Scholar
  23. 23.
    Nettleton, D.F., Abril, D.: Document sanitization: Measuring search engine information loss and risk of disclosure for the wikileaks cables. In: Domingo-Ferrer, J., Tinnirello, I. (eds.) Privacy in Statistical Databases volume 7556 of Lecture Notes in Computer Science, pages 308–321. Springer Berlin Heidelberg (2012)Google Scholar
  24. 24.
    Patwardhan, K., Sapiro, G., Bertalmio, M.: Video inpainting under constrained camera motion. Image Process., IEEE Trans. on 16(2), 545–553 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Podesta, J., Pritzker, P., Moniz, E., Holdren, J., Zients, J.: Big data: seizing opportunities, preserving values. Executive Office of the President, The White House Washington, Study (2014)Google Scholar
  26. 26.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 3 edition (2007)Google Scholar
  27. 27.
    Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  28. 28.
    Staddon, J., Golle, P., Zimny, B.: Web-based inference detection. In: Proceedings of 16th USENIX Security Symposium on USENIX Security Symposium, SS’07, pages 6:1–6:16, Berkeley, CA, USA, USENIX Association (2007)Google Scholar
  29. 29.
    Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. J. Uncertain., Fuzziness and Knowl.-Based Syst. 10(5), 571–588 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sweeney, L.: k-anonymity: a model for protecting privacy. J. Uncertain., Fuzziness and Knowl.-Based Syst. 10(5), 557–570 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Vimercati, S., Foresti, S.: Quasi-Identifier. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, pp. 1010–1011. Springer, US (2011)Google Scholar
  32. 32.
    Wang, L., Jin, H., Yang, R., Gong, M.: Stereoscopic inpainting: Joint color and depth completion from stereo images. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8 (2008)Google Scholar
  33. 33.
    Wexler, Y., Shechtman, E., Irani, M.: Space-time completion of video. Pattern Analysis and Machine Intelligence, IEEE Trans. 29(3), 463–476 (2007)CrossRefGoogle Scholar
  34. 34.
    Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: Proceedings of 32nd International Conference on Very Large Data Bases (VLDB 2006), Seoul, Korea, Sept. 12–15 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bechara Al Bouna
    • 1
  • Eliana J. Raad
    • 2
  • Richard Chbeir
    • 3
  • Charbel Elia
    • 1
  • Ramzi Haraty
    • 4
  1. 1.Ticket LabsAntonine UniversityBaabdaLebanon
  2. 2.LE2I-CNRSBourgogne UniversityDijonFrance
  3. 3.LIUPPA LaboratoryUniversity of Pau and Adour CountriesPauFrance
  4. 4.School of ArtsSciences, Lebanese American UniversityBeirutLebanon

Personalised recommendations