World Wide Web

, Volume 18, Issue 5, pp 1481–1517 | Cite as

Privacy preserving graph publication in a distributed environment

Article

Abstract

Nowadays, more and more people join different social networks to share or comment on their daily activities. Along with the popular usage of social networks, people’s privacy becomes a big concern. Therefore, recently, many works studied how to publish privacy preserving social networks for ”safely” data mining or analysis. These works all assume that there exists a single publisher who holds the complete graph. While, in real life, people join different social networks for different purposes. As a result, there are a group of publishers and each of them holds only a subgraph. Since no one has the complete graph, it is a challenging problem to generate the published graph in the distributed environment without releasing any publisher’s local content. In this paper, we propose an SMC (Secure Multi-Party Computation) based protocol to publish a privacy preserving graph in a distributed environment. We prove that our scheme can publish a privacy preserving graph without leaking the local content information and meanwhile achieve the maximum graph utility. We show the effectiveness of the protocol on real social networks under different distributed storage cases.

Keywords

Soical network Privacy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the kth-ranked element. In: Avdances in Cryptology - Proceedings of Eurocyrpt 04, pp. 40–55. Springer (2004)Google Scholar
  2. 2.
    Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms, 1st edn. Addison-Wesley Longman, Boston (1974)Google Scholar
  3. 3.
    Andreev, K., Räck, H. : Balanced graph partitioning. In: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’04, pp. 120–124. ACM, New York (2004)Google Scholar
  4. 4.
    Bhagat, S., Cormode, G., Krishnamurthy, B., Srivastava, D.: Class-based graph anonymization for social network data. Proc. VLDB Endow. 2, 766–777 (2009)CrossRefGoogle Scholar
  5. 5.
    Campan, A., Truta, T.M.: A clustering approach for data and structural anonymity in social networks. In: PinKDD’08 (2008)Google Scholar
  6. 6.
    Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: a recursive model for graph mining. In: SDM (2004)Google Scholar
  7. 7.
    Cheng, J., Fu, A.W.-c., Liu, J.: K-isomorphism: privacy preserving network publication against structural attacks. In: Proceedings of the 2010 International Conference on Management of Data SIGMOD ’10, pp 459–470. ACM, New York (2010)Google Scholar
  8. 8.
    Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M. Y.: Tools for privacy preserving distributed data mining. SIGKDD Explor. Newsl. 4, 28–34 (2002)CrossRefGoogle Scholar
  9. 9.
    Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing bipartite graph data using safe groupings. Proc. VLDB Endow. 1, 833–844 (2008)CrossRefGoogle Scholar
  10. 10.
    Du, W., Atallah, M. J.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 Workshop on New Security Paradigms NSPW ’01, pp 13–22. ACM, New York (2001)Google Scholar
  11. 11.
    Frikken, K. B., Golle, P.: Private social network analysis: how to assemble pieces of a graph privately. In: Proceedings of the 5th ACM Workshop on Privacy in Electronic Society, WPES ’06, pp 89–98. ACM, New York (2006)Google Scholar
  12. 12.
    Ganta, S. R., Kasiviswanathan, S., Smith, A.: Composition attacks and auxiliary information in data privacy. CoRR (2008)Google Scholar
  13. 13.
    Garg, S., Gupta, T. , Carlsson, N., Mahanti, A.: Evolution of an online social aggregation network: an empirical study. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, IMC ’09, pp 315–321. ACM, New York (2009)CrossRefGoogle Scholar
  14. 14.
    Grujić, J.: Movies recommendation networks as bipartite graphs. In: Proceedings of the 8th International Conference on Computational Science, Part II ICCS ’08, pp 576–583. Springer, Berlin (2008)Google Scholar
  15. 15.
    Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting structural re-identification in anonymized social networks. Proc. VLDB Endow. 1, 102–114 (2008)CrossRefGoogle Scholar
  16. 16.
    Jiang, W., Clifton, C., Kantarcioglu, M.: Transforming semi-honest protocols to ensure accountability. Data Knowl. Eng. 65, 57–74 (2008)CrossRefGoogle Scholar
  17. 17.
    Jurczyk, P., Xiong, L.: Distributed anonymization: achieving privacy for both data subjects and data providers. In: Proceedings of the 23rd Annual IFIP WG 11.3 Working Conference on Data and Applications Security XXIII, pp 191–207. Springer, Berlin (2009)Google Scholar
  18. 18.
    Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE Trans. Knowl. Data Eng. 16, 1026–1037 (2004)CrossRefGoogle Scholar
  19. 19.
    Kerschbaum, F., Schaad, A.: Privacy-preserving social network analysis for criminal investigations. In: Proceedings of the 7th ACM Workshop on Privacy in the Electronic Society, WPES ’08, pp 9–14. ACM, New York (2008)Google Scholar
  20. 20.
    Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD’08, pp. 93–106 (2008)Google Scholar
  21. 21.
    Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD ’03, pp 206–215. ACM, New York (2003)CrossRefGoogle Scholar
  22. 22.
    Vaidya, J., Clifton, C.: Privacy-preserving data mining: Why, how, and when. IEEE Secur. Priv. 2, 19–27 (2004)CrossRefGoogle Scholar
  23. 23.
    Wasserman, S., G. Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (1994)Google Scholar
  24. 24.
    Yao, A. C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science SFCS ’82, pp 160–164. IEEE Computer Society, Washington (1982)Google Scholar
  25. 25.
    Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach. In: SDM’08 (2008)Google Scholar
  26. 26.
    Yonglong, L., Liusheng, H., Yang, W., Weijiang, X.: An efficient protocol for private comparison problem. Chin. J. Electron., 18 (2009)Google Scholar
  27. 27.
    Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph data. In: PinKDD’07, pp. 153–171 (2007)Google Scholar
  28. 28.
    Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In: ICDE’08, pp. 506–515 (2008)Google Scholar
  29. 29.
    Zou, L., Chen, L., Özsu, M.T.: K-automorphism: a general framework for privacy preserving network publication. Proc. VLDB Endow. 2, 946–957 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mingxuan Yuan
    • 1
    • 2
  • Lei Chen
    • 2
  • Philip S. Yu
    • 3
  • Hong Mei
    • 4
  1. 1.Huawei Noah Ark LabHong KongChina
  2. 2.The Hong Kong University of Science and TechnologyHong KongChina
  3. 3.University of Illinois at ChicagoChicagoUSA
  4. 4.Peking UniversityBei JingChina

Personalised recommendations