Advertisement

World Wide Web

, Volume 18, Issue 3, pp 749–766 | Cite as

K-core-based attack to the internet: Is it more malicious than degree-based attack?

  • Jichang Zhao
  • Junjie Wu
  • Mingming Chen
  • Zhiwen Fang
  • Xu Zhang
  • Ke Xu
Article

Abstract

K-core (k-shell) is an interesting measure that discriminates the core and fringe nodes in a complex network. Recent studies have revealed that some nodes of high k-core values may play a vital role in information diffusion. As a result, one may expect that attacking the nodes of high k-core values preferentially will collapse the Internet easily. To our surprise, however, the experiments on two Internet AS-level topologies show that: Although a k-core-based attack is feasible in reality, it is actually less effective than the classic degree-based attack. Indeed, as indicated by the measure normalized susceptibility, we need to remove 2 % to 3 % more nodes in a k-core-based attack in order to collapse the networks. Further investigation on the nodes in a same shell discloses that these nodes often have drastically varying degrees, among which are the nodes of high k-core values but low degrees. These nodes cannot lead to sufficient link deletions in the early stage of a k-core-based attack, and therefore make it less malicious than a degree-based attack. Finally, a strategy called “ELL” is employed for the Internet enhancement. Experiments demonstrate that “ELL” can greatly improve the Internet robustness at very small costs.

Keywords

Robustness K-core index Malicious attack AS-level internet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)CrossRefGoogle Scholar
  2. 2.
    Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core Decomposition: A Tool for the Visualization of Large Scale Networks. arXiv:cs/0504107v2 (2005)
  3. 3.
    Boguñá, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Nat. Commun. 1(62) (2010)Google Scholar
  4. 4.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Butler, K., Farley, T., McDaniel, P., Rexford, J.: A survey of bgp security issues and solutions. Proc. IEEE 98, 100–122 (2010)CrossRefGoogle Scholar
  6. 6.
    Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. PNAS 104(27), 11150–11154 (2007)CrossRefGoogle Scholar
  7. 7.
    Clauset, A., Shalizi, C.R., Newman, M.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Clegg, R.G., Cairano-Gilfedder, C.D., Zhou, S.: A critical look at power law modelling of the internet. Comput. Commun. 33, 259–268 (2010)CrossRefGoogle Scholar
  9. 9.
    Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85(21), 4626–4628 (2000)CrossRefGoogle Scholar
  10. 10.
    Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86(16), 3682–3685 (2001)CrossRefGoogle Scholar
  11. 11.
    Cohen, R., Havlin, S., ben Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91(24), 247,901 (2003)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Cowie, J., Ogielski, A.T., Premore, B.J., Yuan, Y.: Internet worms and global routing instabilities. Proc. SPIE 4868 (2002)Google Scholar
  14. 14.
    Donnet, B., Friedman, T.: Internet topology discovery: a survey. IEEE Commun. Surv. Tutor. 9(4), 2–15 (2007)CrossRefGoogle Scholar
  15. 15.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.: k-core organization of complex networks. Phys. Rev. Lett. 96, 040601 (2006)CrossRefGoogle Scholar
  16. 16.
    Everett, M., Borgatti, S.P.: Ego network betweenness. Soc. Netw. 27, 31–38 (2005)CrossRefGoogle Scholar
  17. 17.
    Garas, A., Argyrakis, P., Rozenblat, C., Tomassini, M., Havlin, S.: Worldwide spreading of economic crisis. New J. Phys. 12(11), 113043 (2010)CrossRefGoogle Scholar
  18. 18.
    Guillaume, J.L., Latapy, M., Magoni, D.: Relevance of massively distributed explorations of the internet topology: qualitative results. Comput. Netw. 50, 3197–3224 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(5), 056109 (2002)CrossRefGoogle Scholar
  20. 20.
    Huffaker, B., Plummer, D., Moore, D., Claffy, K.C.: Topology discovery by active probing. In: SAINT-W ’02, pp. 90–96 (2002)Google Scholar
  21. 21.
    Kil, H., Oh, S.C., Elmacioglu, E., Nam, W., Lee, D.: Graph theoretic topological analysis of web service networks. World Wide Web 12(3), 321–343 (2009)CrossRefGoogle Scholar
  22. 22.
    Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010)CrossRefGoogle Scholar
  23. 23.
    Kumpula, J.M., Onnela, J.P., Saramäki, J., Kaski, K., Kertész, J.: Emergence of communities in weighted networks. Phys. Rev. Lett. 99(22), 228701 (2007)CrossRefGoogle Scholar
  24. 24.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)CrossRefGoogle Scholar
  25. 25.
    Liljenstam, M., Yuan, Y., Premore, B.J., Nicol, D.M.: A mixed abstraction level simulation model of large-scale internet worm infestations. In: MASCOTS ’02, pp. 109–116 (2002)Google Scholar
  26. 26.
    Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K.C., Vahdat, A.: The internet as-level topology: three data sources and one definitive metric. SIGCOMM Comput. Commun. Rev. 36, 17–26 (2006)CrossRefGoogle Scholar
  27. 27.
    Marsden, P.V.: Egocentric and sociocentric measures of network centrality. Soc. Netw. 24, 407–422 (2002)CrossRefGoogle Scholar
  28. 28.
    Musial, K., Budka, M., Juszczyszyn, K. Creation and growth of online social network: how do social networks evolve? World Wide Web (2013). doi: 10.1007/s11280-012-0177-1
  29. 29.
    Musial, K., Kazienko, P.: Social networks on the internet. World Wide Web 16, 31–72 (2013)CrossRefGoogle Scholar
  30. 30.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)CrossRefGoogle Scholar
  31. 31.
    Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)CrossRefGoogle Scholar
  32. 32.
    Qian, T., Li, Q., Srivastava, J., Peng, Z., Yang, Y., Wang, S.: Exploiting small world property for network clustering. World Wide Web (2013). doi: 10.1007/s11280-013-0209-5
  33. 33.
    Rekhter, Y., Li, T., Hares, S.: A border gateway protocol 4 (bgp-4). In: RFC, pp. 4271 (2006)Google Scholar
  34. 34.
    Schneider, C.M., Moreira, A.A., Andrade, J.S. Jr., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. PNAS 108(10), 3838–3841 (2011)CrossRefGoogle Scholar
  35. 35.
    Seidman, S.B.: Network structure and minum degree. Soc. Netw. 5, 269–287 (1983)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Serrano, M.A., Krioukov, D., Boguñá, M.: Percolation in self-similar networks. Phys. Rev. Lett. 106(048), 701 (2011)Google Scholar
  37. 37.
    Shakkottai, S., Fomenkov, M., Koga, R., Krioukov, D., Claffy, K.: Evolution of the internet as-level ecosystem. Eur. Phys. J. B 74, 271–278 (2006)CrossRefGoogle Scholar
  38. 38.
    Sterbenz, J.P., Hutchison, D., Cetinkaya, E.K., Jabbar, A., Rohrer, P.J., Schöller, M., Smith, P.: Resilience and survivability in communication networks: strageties, principles, and survey of disciplines. Comput. Netw. 54, 1245–1265 (2010)CrossRefzbMATHGoogle Scholar
  39. 39.
    Sun, X., Hai, Z.: Modeling and navigation of social information networks in metric spaces. World Wide Web (2013). doi: 10.1007/s11280-012-0199-8
  40. 40.
    Tanizawa, T., Paul, G., Cohen, R., Havlin, S., Stanley, H.E.: Optimization of network robustness to waves of targeted and random attacks. Phys. Rev. E 71(4), 047101 (2005)CrossRefGoogle Scholar
  41. 41.
    Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics 5, 444–449 (2005)CrossRefGoogle Scholar
  42. 42.
    Xiao, S., Xiao, G.: On imperfect node protection in complex communication networks. J. Phys. A: Math. Theor. 055(5), 101 (2011)Google Scholar
  43. 43.
    Yan, G., Eidenbenz, S., Thulasidasan, S., Datta, P., Ramaswamy, V.: Criticality analysis of internet infrastructure. Comput. Netw. 54, 1169–1182 (2010)CrossRefzbMATHGoogle Scholar
  44. 44.
  45. 45.
  46. 46.
    Zhang, G.Q., Zhang, G.Q., Yang, Q.F., Cheng, S.Q., Zhou, T.: Evolution of the internet and its cores. New J. Phys. 10(12), 123027 (2008)CrossRefGoogle Scholar
  47. 47.
    Zhang, J., Zhao, H., Xu, J., Liu, Z.: Characterizing and modeling the internet router-level topology - the hierarchical features and hir model. Comput. Commun. 33, 2001–2011 (2010)CrossRefGoogle Scholar
  48. 48.
    Zhao, J., Xu, K.: Enhancing the robustness of scale-free networks. J. Phys. A: Math. Theor. 42(19), 195003 (2009)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Zhou, S., Mondragón, R.J.: Accurately modeling the internet topology. Phys. Rev. E 70, 066108 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Software Development EnvironmentBeihang UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations, School of Economics and ManagementBeihang UniversityBeijingChina
  3. 3.National Computer Network Emergency Response Technical Team/Coordination Center of ChinaBeijingChina

Personalised recommendations