Advertisement

World Wide Web

, Volume 17, Issue 3, pp 427–454 | Cite as

Querying business process model repositories

A survey of current approaches and issues
  • Jianmin WangEmail author
  • Tao Jin
  • Raymond K. Wong
  • Lijie Wen
Article

Abstract

Business process management technology is becoming increasingly popular, resulting in more and more business process models being created. Hence, there is a need for these business process models to be managed effectively. For effective business process model management, being able to efficiently query large amount of business process models is essential. For example, it is preferable to find a similar or related model to customize, rather than building a new one from scratch. This would not only save time, but would also be less error-prone and more coherent with the existing models of the enterprise. Querying large amounts of business process models efficiently is also vital during company amalgamation, in which business process models from multiple companies need to be examined and integrated. This paper provides: an overview of the field of querying business process models; a summary of its literature; and a list of challenges (and some potential solutions) that have yet to be addressed. In particular, we aim to compare the differences between querying business process models and general graph querying. We also discuss literature work from graph querying research that can be used when querying business process models.

Keywords

Business process model Repository Query 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbaci, K., Lemos, F., HadjAli, A., Grigori, D., Lietard, L., Rocacher, D., Bouzeghoub, M.: Selecting and ranking business processes with preferences: an approach based on fuzzy sets. In: OTM Conferences (1), pp. 38–55 (2011)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)Google Scholar
  3. 3.
    Awad, A.: BPMN-Q: a language to query business processes. In: EMISA, pp. 115–128 (2007)Google Scholar
  4. 4.
    Awad, A., Sakr, S.: Querying graph-based repositories of business process models. In: DASFAA Workshops, pp. 33–44 (2010)Google Scholar
  5. 5.
    Awad, A., Polyvyanyy, A., Weske, M.: Semantic querying of business process models. In: EDOC, pp. 85–94 (2008)Google Scholar
  6. 6.
    Becker, M., Laue, R.: Analysing differences between business process similarity measures. In: 1st International Workshop on Process Model Collections, pp. 39–49 (2011)Google Scholar
  7. 7.
    Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with BP-QL. In: VLDB, pp. 1255–1258 (2005)Google Scholar
  8. 8.
    Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In: VLDB, pp. 343–354 (2006)Google Scholar
  9. 9.
    Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with BP-QL. Inf. Syst. 33(6), 477–507 (2008)CrossRefGoogle Scholar
  10. 10.
    Braga, D., Campi, A.: XQBE: a graphical environment to query XML data. World Wide Web 8(3), 287–316 (2005)CrossRefGoogle Scholar
  11. 11.
    Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recogn. Lett. 19(3–4), 255–259 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query processing on graph databases. In: SIGMOD Conference, pp. 857–872 (2007)Google Scholar
  13. 13.
    Cheng, J., Ke, Y., Ng, W.: Efficient query processing on graph databases. ACM Trans. Database Syst. 34(1) (2009)Google Scholar
  14. 14.
    Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158 (1971)Google Scholar
  15. 15.
    Deutch, D., Milo, T.: Querying structural and behavioral properties of business processes. In: DBPL, pp. 169–185 (2007)Google Scholar
  16. 16.
    Dice, L.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  17. 17.
    Dijkman, R.M., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: BPM, pp. 48–63 (2009)Google Scholar
  18. 18.
    Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)CrossRefGoogle Scholar
  19. 19.
    Dumas, M., van der Aalst, W., Ter Hofstede, A.: Process-Aware Information Systems: Bridging People and Software Through Process Technology. Wiley-Blackwell (2005)Google Scholar
  20. 20.
    Dumas, M., García-Bañuelos, L., Dijkman, R.M.: Similarity search of business process models. IEEE Data Eng. Bull. 32(3), 23–28 (2009)Google Scholar
  21. 21.
    Elias, M., Shahzad, K., Johannesson, P.: A business process metadata model for a process model repository. In: BMMDS/EMMSAD, pp. 287–300 (2010)Google Scholar
  22. 22.
    Engelfriet, J.: Branching processes of petri nets. Acta Inf. 28(6), 575–591 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. Form. Methods Syst. Des. 20(3), 285–310 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Flesca, S., Furfaro, F., Greco, S.: A query language for XML based on graph grammars. World Wide Web 5(2), 125–158 (2002)CrossRefGoogle Scholar
  25. 25.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  26. 26.
    Grimaldi, R.: Discrete and Combinatorial Mathematics: An Applied Introduction. Addison-Wesley (2004)Google Scholar
  27. 27.
    Han, J., Yan, X., Yu, P.S.: Mining, indexing, and similarity search in graphs and complex structures. In: ICDE, p. 106 (2006)Google Scholar
  28. 28.
    Han, W.S., Lee, J., Pham, M.D., Yu, J.X.: iGraph: a framework for comparisons of disk-based graph indexing techniques. PVLDB 3(1), 449–459 (2010)Google Scholar
  29. 29.
    Han, W.S., Pham, M.D., Lee, J., Kasperovics, R., Yu, J.X.: iGraph in action: performance analysis of disk-based graph indexing techniques. In: SIGMOD Conference, pp. 1241–1242 (2011)Google Scholar
  30. 30.
    He, H., Singh, A.K.: Closure-tree: an index structure for graph queries. In: ICDE, p. 38 (2006)Google Scholar
  31. 31.
    Hepp, M., Roman, D.: An ontology framework for semantic business process management. In: Wirtschaftsinformatik (1), pp. 423–440 (2007)Google Scholar
  32. 32.
    Jiang, H., Wang, H., Yu, P.S., Zhou, S.: GString: a novel approach for efficient search in graph databases. In: ICDE, pp. 566–575 (2007)Google Scholar
  33. 33.
    Jin, T., Wang, J., Wu, N., Rosa, M.L., ter Hofstede, A.H.M.: Efficient and accurate retrieval of business process models through indexing (short paper). In: OTM Conferences (1), pp. 402–409 (2010)Google Scholar
  34. 34.
    Jin, T., Wang, J., Wen, L.: Efficient retrieval of similar business process models based on structure (short paper). In: OTM Conferences (1), pp. 56–63 (2011)Google Scholar
  35. 35.
    Jin, T., Wang, J., Wen, L.: Querying business process models based on semantics. In: DASFAA (2), pp. 164–178 (2011)Google Scholar
  36. 36.
    Jin, T., Wang, J., Rosa, M.L., ter Hofstede, A., Wen, L.: Efficient querying of large process model repositories. Comput. Ind. (CII) 64(1), 41–49 (2013)CrossRefGoogle Scholar
  37. 37.
    Jin, T., Wang, J., Wen, L.: Efficient retrieval of similar workflow models based on behavior. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb. Lecture Notes in Computer Science, vol. 7235, pp. 677–684. Springer (2012)Google Scholar
  38. 38.
    Ke, Y., Cheng, J., Yu, J.X.: Querying large graph databases. In: DASFAA (2), pp. 487–488 (2010)Google Scholar
  39. 39.
    Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of control flow in workflows. Acta Inf. 39(3), 143–209 (2003)CrossRefzbMATHGoogle Scholar
  40. 40.
    Kunze, M., Weske, M.: Metric trees for efficient similarity search in large process model repositories. In: Business Process Management Workshops, pp. 535–546 (2010)Google Scholar
  41. 41.
    Lincoln, M., Gal, A.: Searching Business Process Repositories Using Operational Similarity. In: OTM Conferences (1), pp. 2–19 (2011)Google Scholar
  42. 42.
    Lohmann, N., Verbeek, E., Dijkman, R.M.: Petri net transformations for business processes—a survey. T. Petri Nets and Other Models of Concurrency (TOPNOC) 2, 46–63 (2009)CrossRefGoogle Scholar
  43. 43.
    Lu, R., Sadiq, S.W.: Managing process variants as an information resource. In: Business Process Management, pp. 426–431 (2006)Google Scholar
  44. 44.
    Mahleko, B., Wombacher, A.: Indexing business processes based on annotated finite state automata. In: ICWS, pp. 303–311 (2006)Google Scholar
  45. 45.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guidelines (7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)CrossRefGoogle Scholar
  46. 46.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  47. 47.
    Papadopoulos, A., Manolopoulos, Y.: Structure-based similarity search with graph histograms. In: DEXA Workshop, pp. 174–178 (1999)Google Scholar
  48. 48.
    Pesic, M.: Constraint-based workflow management systems: shifting control to users. Ph.D. thesis, Technische Universiteit Eindhoven (2008)Google Scholar
  49. 49.
    Qiao, M., Akkiraju, R., Rembert, A.J.: Towards efficient business process clustering and retrieval: combining language modeling and structure matching. In: BPM, pp. 199–214 (2011)Google Scholar
  50. 50.
    Raymond, J.W., Gardiner, E.J., Willett, P.: RASCAL: calculation of graph similarity using maximum common edge subgraphs. Comput. J. 45(6), 631–644 (2002)CrossRefzbMATHGoogle Scholar
  51. 51.
    Rosa, M.L., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J., Dumas, M., García-Bañuelos, L.: APROMORE: an advanced process model repository. Expert Syst. Appl. 38(6), 7029–7040 (2011)CrossRefGoogle Scholar
  52. 52.
    Sakr, S., Awad, A.: A framework for querying graph-based business process models. In: WWW, pp. 1297–1300 (2010)Google Scholar
  53. 53.
    Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and re-using workflows with vistrails. In: SIGMOD Conference, pp. 1251–1254 (2008)Google Scholar
  54. 54.
    Shahzad, K., Elias, M., Johannesson, P.: Requirements for a business process model repository: a stakeholders’ perspective. In: BIS, pp. 158–170 (2010)Google Scholar
  55. 55.
    Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an Efficient Algorithm for Testing Subgraph Isomorphism. PVLDB 1(1), 364–375 (2008)Google Scholar
  56. 56.
    Shao, Q., Sun, P., Chen, Y.: WISE: a workflow information search engine. In: ICDE, pp. 1491–1494 (2009)Google Scholar
  57. 57.
    Shasha, D., Wang, J.T.L., Giugno, R.: Algorithms and Applications of Tree and Graph Searching. In: PODS, pp. 39–52 (2002)Google Scholar
  58. 58.
    van der Aalst, W.M.P.: The application of petri nets to workflow management. J. Circuits Syst. Comput. 8(1), 21–66 (1998)CrossRefGoogle Scholar
  59. 59.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  60. 60.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: ICATPN, pp. 444–454 (2005)Google Scholar
  61. 61.
    van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract). In: CONCUR, pp. 278–297 (1990)Google Scholar
  62. 62.
    Wang, H., Li, J., Wang, H.: Clustered chain path index for XML document: efficiently processing branch queries. World Wide Web 11(1), 153–168 (2008)CrossRefGoogle Scholar
  63. 63.
    Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioral profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410–429 (2011)CrossRefMathSciNetGoogle Scholar
  64. 64.
    Williams, D.W., Huan, J., Wang, W.: Graph database indexing using structured graph decomposition. In: ICDE, pp. 976–985 (2007)Google Scholar
  65. 65.
    Wong, K.F., Yu, J.X., Tang, N.: Answering XML queries using path-based indexes: a survey. World Wide Web 9(3), 277–299 (2006)CrossRefGoogle Scholar
  66. 66.
    Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: ICDM, pp. 721–724 (2002)Google Scholar
  67. 67.
    Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In: SIGMOD Conference, pp. 335–346 (2004)Google Scholar
  68. 68.
    Yan, X., Yu, P.S., Han, J.: Graph indexing based on discriminative frequent structure analysis. ACM Trans. Database Syst. 30(4), 960–993 (2005)CrossRefGoogle Scholar
  69. 69.
    Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In: SIGMOD Conference, pp. 766–777 (2005)Google Scholar
  70. 70.
    Yan, X., Zhu, F., Yu, P.S., Han, J.: Feature-based similarity search in graph structures. ACM Trans. Database Syst. 31(4), 1418–1453 (2006)CrossRefGoogle Scholar
  71. 71.
    Yan, Z., Dijkman, R.M., Grefen, P.: Fast business process similarity search with feature-based similarity estimation. In: OTM Conferences (1), pp. 60–77 (2010)Google Scholar
  72. 72.
    Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure based on transition adjacency relations. Comput. Ind. 61(5), 463–471 (2010)CrossRefGoogle Scholar
  73. 73.
    Zhang, S., Hu, M., Yang, J.: TreePi: a novel graph indexing method. In: ICDE, pp. 966–975 (2007)Google Scholar
  74. 74.
    Zhao, P., Yu, J.X., Yu, P.S.: Graph indexing: tree + Delta >= graph. In: VLDB, pp. 938–949 (2007)Google Scholar
  75. 75.
    Zheng, S., Zhou, A., Zhang, L., Lu, H.: DVQ: towards visual query processing of XML database systems. World Wide Web 6(2), 233–253 (2003)CrossRefGoogle Scholar
  76. 76.
    Zou, L., Chen, L., Yu, J.X., Lu, Y.: A novel spectral coding in a large graph database. In: EDBT, pp. 181–192 (2008)Google Scholar
  77. 77.
    Zou, L., Chen, L., Zhang, H., Lu, Y., Lou, Q.: Summarization graph indexing: beyond frequent structure-based approach. In: DASFAA, pp. 141–155 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jianmin Wang
    • 1
    • 2
    • 3
    Email author
  • Tao Jin
    • 1
    • 2
    • 3
  • Raymond K. Wong
    • 4
  • Lijie Wen
    • 1
    • 2
    • 3
  1. 1.School of SoftwareTsinghua UniversityBeijingChina
  2. 2.Key Laboratory for Information System SecurityMinistry of EducationBeijingChina
  3. 3.Tsinghua National Laboratory for Information Science and TechnologyBeijingChina
  4. 4.School of Computer Science & EngineeringUniversity of New South WalesKensingtonAustralia

Personalised recommendations