Advertisement

World Wide Web

, Volume 17, Issue 1, pp 161–188 | Cite as

Aggregate nearest neighbor queries in uncertain graphs

  • Zhang LiuEmail author
  • Chaokun Wang
  • Jianmin Wang
Article

Abstract

Most recently, uncertain graph data begin attracting significant interests of database research community, because uncertainty is the intrinsic property of the real-world and data are more suitable to be modeled as graphs in numbers of applications, e.g. social network analysis, PPI networks in biology, and road network monitoring. Meanwhile, as one of the basic query operators, aggregate nearest neighbor (ANN) query retrieves a data entity whose aggregate distance, e.g. sum, max, to the given query data entities is smaller than those of other data entities in a database. ANN query on both certain graph data and high dimensional data has been well studied by previous work. However, existing ANN query processing approaches cannot handle the situation of uncertain graphs, because topological structures of an uncertain graph may vary in different possible worlds. Motivated by this, we propose the aggregate nearest neighbor query in uncertain graphs (UG-ANN) in this paper. First of all, we give the formal definition of UG-ANN query and the basic UG-ANN query algorithm. After that, to improve the efficiency of UG-ANN query processing, we develop two kinds of pruning approaches, i.e. structural pruning and instance pruning. The structural pruning takes advantages the monotonicity of the aggregate distance to derive the upper and lower bounds of the aggregate distance for reducing the graph size. Whereas, the instance pruning decreases the number of possible worlds to be checked in the searching tree. Comprehensive experimental results on real-world data sets demonstrate that the proposed method significantly improves the efficiency of the UG-ANN query processing.

Keywords

Uncertain graph Aggregate nearest neighbor Query processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Cheng, S.W., Tao, Y., Yi, K.: Indexing uncertain data. In: PODS, pp. 137–146 (2009)Google Scholar
  2. 2.
    Blin, G., Sikora, F., Vialette, S.: Querying graphs in protein-protein interactions networks using feedback vertex set. IEEE-ACM Trans. Comput. Biol. Bioinform. 7, 628–635 (2010)CrossRefGoogle Scholar
  3. 3.
    Bohannon, J.: Counterterrorism’s new tool: ‘metanetwork’ analysis. Science 325(5939), 409–411 (2009)CrossRefGoogle Scholar
  4. 4.
    Bondy, J.A., Murty, U.S.R.: Graph Theory, Graduate Texts in Mathematics, vol. 244. Springer (2008)Google Scholar
  5. 5.
    Chen, Z., Shen, H.T., Zhou, X., Yu, J.X.: Monitoring path nearest neighbor in road networks. In: SIGMOD, pp. 591–602 (2009)Google Scholar
  6. 6.
    Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating probabilistic queries over imprecise data. In: SIGMOD, pp. 551–562 (2003)Google Scholar
  7. 7.
    Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: VLDB, pp. 864–875 (2004)Google Scholar
  8. 8.
    Dijkstra, E.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: a probabilistic threshold approach. In: SIGMOD, pp. 673–686 (2008)Google Scholar
  11. 11.
    Jensen, C.S., Kolárvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road networks. In: GIS, pp. 1–8 (2003)Google Scholar
  12. 12.
    Kriegel, H.P., Kunath, P., Renz, M.: Probabilistic nearest-neighbor query on uncertain objects. In: DASFAA, pp. 337–348 (2007)Google Scholar
  13. 13.
    Lian, X., Chen, L.: Probabilistic group nearest neighbor queries in uncertain databases. IEEE Trans. Knowl. Data Eng. 20(6), 809–824 (2008)CrossRefGoogle Scholar
  14. 14.
    Liben-Nowell, D., Kleinberg, J.M.: The link-prediction problem for social networks. In: CIKM, pp. 556–559 (2003)Google Scholar
  15. 15.
    Luo, Y., Furuse, K., Chen, H., Ohbo, N.: Finding aggregate nearest neighbor efficiently without indexing. In: Infoscale, pp. 1–2 (2007)Google Scholar
  16. 16.
    Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, pp. 301–312 (2004)Google Scholar
  17. 17.
    Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)CrossRefGoogle Scholar
  18. 18.
    Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representations. In: SSD, pp. 111–132 (1999)Google Scholar
  19. 19.
    Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: k-nearest neighbors in uncertain graphs. PVLDB 3(1), 997–1008 (2010)Google Scholar
  20. 20.
    Soliman, M.A., Ilyas, I.F., Chang, K.C.C.: Top-k query processing in uncertain databases. In: ICDE, pp. 896–905 (2007)Google Scholar
  21. 21.
    Yi, K., Li, F., Kollios, G., Srivastava, D.: Efficient processing of top-k queries in uncertain databases. In: ICDE, pp. 1406–1408 (2008)Google Scholar
  22. 22.
    Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks. IEEE Trans. Knowl. Data Eng. 17(6), 820–833 (2005)CrossRefGoogle Scholar
  23. 23.
    Yuan, Y., Wang, G., Wang, H., Chen, L.: Efficient subgraph search over large uncertain graphs. PVLDB 4(11), 876–886 (2011)Google Scholar
  24. 24.
    Yuen, S.M., Tao, Y., Xiao, X., Pei, J., Zhang, D.: Superseding nearest neighbor search on uncertain spatial databases. IEEE Trans. Knowl. Data Eng. 22(7), 1041–1055 (2010)CrossRefGoogle Scholar
  25. 25.
    Zhu, L., Zhang, A.: Supporting multi-example image queries in image databases. In: IEEE ICME, pp. 697–700 (2000)Google Scholar
  26. 26.
    Zou, Z., Li, J., Gao, H., Zhang, S.: Mining frequent subgraph patterns from uncertain graph data. IEEE Trans. Knowl. Data Eng. 22(9), 1203–1218 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.School of SoftwareTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations