World Wide Web

, Volume 16, Issue 5–6, pp 567–593 | Cite as

Multidimensional networks: foundations of structural analysis

  • Michele BerlingerioEmail author
  • Michele Coscia
  • Fosca Giannotti
  • Anna Monreale
  • Dino Pedreschi


Complex networks have been receiving increasing attention by the scientific community, thanks also to the increasing availability of real-world network data. So far, network analysis has focused on the characterization and measurement of local and global properties of graphs, such as diameter, degree distribution, centrality, and so on. In the last years, the multidimensional nature of many real world networks has been pointed out, i.e. many networks containing multiple connections between any pair of nodes have been analyzed. Despite the importance of analyzing this kind of networks was recognized by previous works, a complete framework for multidimensional network analysis is still missing. Such a framework would enable the analysts to study different phenomena, that can be either the generalization to the multidimensional setting of what happens in monodimensional networks, or a new class of phenomena induced by the additional degree of complexity that multidimensionality provides in real networks. The aim of this paper is then to give the basis for multidimensional network analysis: we present a solid repertoire of basic concepts and analytical measures, which take into account the general structure of multidimensional networks. We tested our framework on different real world multidimensional networks, showing the validity and the meaningfulness of the measures introduced, that are able to extract important and non-random information about complex phenomena in such networks.


complex networks social network analysis World Wide Web 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abello, J., Buchsbaum, A.L., Westbrook, J.R.: A functional approach to external graph algorithms. In: Algorithmica, pp. 332–343. Springer (1998)Google Scholar
  2. 2.
    Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law networks. Phys. Rev. E 64(46135) (2001)Google Scholar
  3. 3.
    Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: STOC, pp. 171–180. ACM (2000)Google Scholar
  4. 4.
    Angelova, R., Kasneci, G., Weikum, G.: Graffiti: graph-based classification in heterogeneous networks. World Wide Web 15, 139–170 (2012). doi: 10.1007/s11280-011-0126-4 CrossRefGoogle Scholar
  5. 5.
    Barabási, A.L.: Linked: The New Science of Networks. Perseus Books Group (2002)Google Scholar
  6. 6.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.A.F.: Characterizing user behavior in online social networks. In: Internet Measurement Conference, pp. 49–62 (2009)Google Scholar
  8. 8.
    Berlingerio, M., Coscia, M., Giannotti, F.: Mining the temporal dimension of the information propagation. In: IDA, pp. 237–248 (2009)Google Scholar
  9. 9.
    Berlingerio, M., Coscia, M., Giannotti, F.: Finding and characterizing communities in multidimensional networks. In: ASONAM, pp. 490–494 (2011)Google Scholar
  10. 10.
    Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: Foundations of multidimensional network analysis. In: ASONAM, pp. 485–489 (2011)Google Scholar
  11. 11.
    Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: The pursuit of hubbiness: analysis of hubs in large multidimensional networks. J. Comput. Sci. 2, 223–237 (2012)CrossRefGoogle Scholar
  12. 12.
    Berlingerio, M., Pinelli, F., Nanni, M., Giannotti, F.: Temporal mining for interactive workflow data analysis. In: KDD pp. 109–118 (2009)Google Scholar
  13. 13.
    Bringmann, B., Berlingerio, M., Bonchi, F., Gionis, A.: Learning and predicting the evolution of social networks. IEEE Intell. Syst. 25, 26–35 (2010)CrossRefGoogle Scholar
  14. 14.
    Musial, K., Kazienko, P.: Social networks on the internet. World Wide Web J. (2012). doi: 10.1007/s11280-011-0155-z
  15. 15.
    Buchanan, M.: Nexus: Small Worlds and the Groundbreaking Theory of Networks. W.W. Norton & Co. (2003)Google Scholar
  16. 16.
    De Castro, R., Grossman, J.W.: Famous trails to Paul Erds. Math. Intell. 21, 51–63 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms. ACM Comput. Surv. 38 (2006)Google Scholar
  18. 18.
    Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: a recursive model for graph mining. In: ICDM (2004)Google Scholar
  19. 19.
    Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph olap: towards online analytical processing on graphs. In: ICDM, pp. 103–112 (2008)Google Scholar
  20. 20.
    Cook, D.J., Crandall, A.S., Singla, G., Thomas, B.: Detection of social interaction in smart spaces. Cybern. Syst. 41(2), 90–104 (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    Donato, D.: Graph structures and algorithms for query-log analysis. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE, Lecture Notes in Computer Science, vol. 6158, pp. 126–131. Springer (2010)Google Scholar
  22. 22.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: SIGCOMM, pp. 251–262 (1999)Google Scholar
  23. 23.
    Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: KDD, pp. 1019–1028 (2010)Google Scholar
  24. 24.
    Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)CrossRefGoogle Scholar
  25. 25.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)CrossRefGoogle Scholar
  26. 26.
    Kashima, H., Kato, T., Yamanishi, Y., Sugiyama, M., Tsuda, K.: Link propagation: a fast semi-supervised learning algorithm for link prediction. In: SDM, pp. 1099–1110. SIAM (2009)Google Scholar
  27. 27.
    Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The Web as a Graph: Measurements, Models, and Methods (1999)Google Scholar
  28. 28.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: WWW, pp. 641–650. ACM (2010)Google Scholar
  29. 29.
    Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Newman, M.E.J.: The Structure and Function of Complex Networks (2003)Google Scholar
  31. 31.
    Nowell, D.L., Kleinberg, J.: The link prediction problem for social networks. In: CIKM ’03, pp. 556–559. ACM (2003)Google Scholar
  32. 32.
    Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: InfoScale ’06, p. 1. ACM (2006)Google Scholar
  33. 33.
    Redner, S.: How popular is your paper? an empirical study of the citation distribution. Eur. Phys. J., B Cond. Matter Complex Syst. 4(2), 131–134 (1998)CrossRefGoogle Scholar
  34. 34.
    Rossetti, G., Berlingerio, M., Giannotti, F.: Scalable link prediction on multidimensional networks. In: Spiliopoulou, M., Wang, H., Cook, D.J., Pei, J., Wang, W., Zaïane, O.R., Wu, X. (eds.) ICDM Workshops, pp, 979–986. IEEE (2011)Google Scholar
  35. 35.
    Szell, M., Lambiotte, R., Thurner, S.: Trade, conflict and sentiments: multi-relational organization of large-scale social networks. PNAS 107(31), 13636–13641. arXiv.1003.5137 (2010)Google Scholar
  36. 36.
    Tang, L., Liu, H.: Relational learning via latent social dimensions. In: KDD, pp. 817–826. ACM (2009)Google Scholar
  37. 37.
    Watts, D.J.: Six Degrees: The Science of a Connected Age (2003)Google Scholar
  38. 38.
    Yan, X., Han, J.: gspan: graph-based substructure pattern mining. ICDM ’02, pp. 721–724 (2002)Google Scholar
  39. 39.
    Yang, J., Leskovec, J.: Modeling information diffusion in implicit networks. In: Webb, G.I., Liu, B., Zhang, C., Gunopulos, D., Wu, X. (eds.) ICDM, pp. 599–608. IEEE Computer Society (2010)Google Scholar
  40. 40.
    Zhao, P., Yu., J.: Fast frequent free tree mining in graph databases. World Wide Web 11, 71–92 (2008). doi: 10.1007/s11280-007-0031-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michele Berlingerio
    • 1
    Email author
  • Michele Coscia
    • 2
  • Fosca Giannotti
    • 3
  • Anna Monreale
    • 4
  • Dino Pedreschi
    • 4
  1. 1.IBM ResearchIBM Technology Campus, Damastown Industrial EstateDublin 15Ireland
  2. 2.Center for International DevelopmentHarvard UniversityCambridgeUSA
  3. 3.KDDLab, ISTI - CNRPisaItaly
  4. 4.KDDLab, Dept. of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations