World Wide Web

, Volume 16, Issue 5–6, pp 595–620 | Cite as

A time decoupling approach for studying forum dynamics

  • Andrey Kan
  • Jeffrey Chan
  • Conor Hayes
  • Bernie Hogan
  • James Bailey
  • Christopher Leckie


Online forums are rich sources of information about user communication activity over time. Finding temporal patterns in online forum communication threads can advance our understanding of the dynamics of conversations. The main challenge of temporal analysis in this context is the complexity of forum data. There can be thousands of interacting users, who can be numerically described in many different ways. Moreover, user characteristics can evolve over time. We propose an approach that decouples temporal information about users into sequences of user events and inter-event times. We develop a new feature space to represent the event sequences as paths, and we model the distribution of the inter-event times. We study over 30,000 users across four Internet forums, and discover novel patterns in user communication. We find that users tend to exhibit consistency over time. Furthermore, in our feature space, we observe regions that represent unlikely user behaviors. Finally, we show how to derive a numerical representation for each forum, and we then use this representation to derive a novel clustering of multiple forums.


internet forums conversation dynamics temporal evolution reciprocity visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11280_2012_169_MOESM1_ESM.pdf (644 kb)
(PDF 644 KB)


  1. 1.
    Adar, E., Adamic, L.: Tracking information epidemics in blogspace. In: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 207–214 (2005)Google Scholar
  2. 2.
    Aumayr, E., Chan, J., Hayes, C.: Reconstruction of threaded conversations in online discussion forums. In: The 5th International AAAI Conference on Weblogs and Social Media (2011)Google Scholar
  3. 3.
    Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing user behavior in online social networks. In: The 9th ACM Conference on Internet Measurement, pp. 49–62 (2009)Google Scholar
  4. 4.
    Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social networks. In: The 2006 ACM International Workshop on Mining Software Repositories, pp. 137–143 (2006)Google Scholar
  5. 5.
    Botev, Z., Grotowski, J., Kroese, D.: Kernel density estimation via diffusion. Ann. Stat. 38(5), 2916–2957 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boutsidis, C., Mahoney, M., Drineas, P.: Unsupervised feature selection for the k-means clustering problem. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 153–161 (2009)Google Scholar
  7. 7.
    Chan, J., Daly, E., Hayes, C.: Decomposing discussion forums and boards using user roles. In: The 4th International AAAI Conference on Weblogs and Social Media, pp. 215–218 (2010)Google Scholar
  8. 8.
    Gonzalez-Bailon, S., Kaltenbrunner, A., Banchs, R.: The structure of political discussion networks: a model for the analysis of online deliberation. J. Inf. Technol. 25(2), 230–243 (2010)CrossRefGoogle Scholar
  9. 9.
    Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: a survey and novel approach. In: Last, M., Kandel, A., Bunke, H. (eds.) Data Mining in Time Series Databases, pp. 1–21. World Scientific Publishing (2003)Google Scholar
  10. 10.
    Kim, S.N., Wang, L., Baldwin, T.: Tagging and linking web forum posts. In: The 14th Conference on Computational Natural Language Learning, pp. 192–202. Springer (2010)Google Scholar
  11. 11.
    Kumar, R., Mahdian, M., McGlohon, M.: Dynamics of conversations. In: The 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 553–562. ACM (2010)Google Scholar
  12. 12.
    Liao, Y., Moshtaghi, M., Han, B., Karunasekera, S., Kotagiri, R., Baldwin, T., Harwood, A., Pattison, P.: Mining micro-blogs: opportunities and challenges. In: Abraham, A., Hassanien, A.E. (eds.) Social Networks: Computational Aspects and Mining. Springer (2011)Google Scholar
  13. 13.
    Lin, C., Mei, Q., Jiang, Y., Han, J., Qi, S.: The joint inference of topic diffusion and evolution in social communities. In: The 11th International Conference on Data Mining, pp. 378–387. IEEE (2011)Google Scholar
  14. 14.
    Loekito, E., Bailey, J., Pei, J.: A binary decision diagram based approach for mining frequent subsequences. Knowl. Inf. Syst. 24(2), 235–268 (2010)CrossRefGoogle Scholar
  15. 15.
    Lui, M., Baldwin, T.: Classifying user forum participants: separating the gurus from the hacks, and other tales of the internet. In: The 2010 Australasian Language Technology Workshop, vol. 49, p. 57 (2010)Google Scholar
  16. 16.
    Malmgren, R., Stouffer, D., Motter, A., Amaral, L.: A Poissonian explanation for heavy tails in e-mail communication. Proc. Natl. Acad. Sci. USA 105(47), 18,153–18,158 (2008)CrossRefGoogle Scholar
  17. 17.
    Morzy, M.: An analysis of communities in different types of online forums. In: The 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 341–345. IEEE (2010)Google Scholar
  18. 18.
    Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In: 2009 SIAM International Conference on Data Mining, pp. 1–12 (2009)Google Scholar
  19. 19.
    Petrovčič, A., Vehovar, V., Žiberna, A.: Posting, quoting, and replying: a comparison of methodological approaches to measure communication ties in web forums. Qual. Quant. 46, 1–26 (2011)Google Scholar
  20. 20.
    Plickert, G., Côté, R., Wellman, B.: It’s not who you know, it’s how you know them: who exchanges what with whom? Soc. Netw. 29(3), 405–429 (2007)CrossRefGoogle Scholar
  21. 21.
    Somol, P., Novovicová, J., Pudil, P.: Efficient feature subset selection and subset size optimization. In: Herout, A. (ed.) Pattern Recognition Recent Advances. InTech (2010)Google Scholar
  22. 22.
    Turner, T., Smith, M., Fisher, D., Welser, H.: Picturing usenet: mapping computer-mediated collective action. J. Comput.-Mediat. Commun. 10(4), 7 (2005)Google Scholar
  23. 23.
    Viégas, F., Smith, M.: Newsgroup crowds and authorlines: visualizing the activity of individuals in conversational cyberspaces. In: The 37th Annual Hawaii International Conference on System Sciences, p. 10 (2004)Google Scholar
  24. 24.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.: On the evolution of user interaction in Facebook. In: The 2nd ACM Workshop on Online Social Networks, pp. 37–42 (2009)Google Scholar
  25. 25.
    Wang, L., S.N., K., Baldwin, T.: Thread-level analysis over technical user forum data. In: The 2010 Australasian Language Technology Workshop, vol. 49, p. 27 (2010)Google Scholar
  26. 26.
    Warren Liao, T.: Clustering of time series data—a survey. Pattern Recogn. 38(11), 1857–1874 (2005)CrossRefzbMATHGoogle Scholar
  27. 27.
    Welser, H., Gleave, E., Fisher, D., Smith, M.: Visualizing the signatures of social roles in online discussion groups. J. Soc. Struct. 8(2), 1–24 (2007)Google Scholar
  28. 28.
    Wu, D., Ke, Y., Yu, J.X., Yu, P.S., Chen, L.: Leadership discovery when data correlatively evolve. World Wide Web 14(1), 1–25 (2011)CrossRefGoogle Scholar
  29. 29.
    Xiong, R., Donath, J.: PeopleGarden: creating data portraits for users. In: The 12th Annual ACM Symposium on User Interface Software and Technology, pp. 37–44 (1999)Google Scholar
  30. 30.
    Yao, J., Cui, B., Huang, Y., Zhou, Y.: Bursty event detection from collaborative tags. World Wide Web 15(2), 171–95 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Andrey Kan
    • 1
  • Jeffrey Chan
    • 3
  • Conor Hayes
    • 2
  • Bernie Hogan
    • 4
  • James Bailey
    • 1
  • Christopher Leckie
    • 1
  1. 1.NICTA Victoria Research Laboratory, Department of Computing and Information SystemsThe University of MelbourneMelbourneAustralia
  2. 2.Digital Enterprise Research Institute, National University of IrelandGalwayIreland
  3. 3.Department of Computing and Information SystemsThe University of MelbourneMelbourneAustralia
  4. 4.Oxford Internet InstituteUniversity of OxfordOxfordUK

Personalised recommendations