World Wide Web

, Volume 16, Issue 1, pp 73–89 | Cite as

Widget Identification: A High-Level Approach to Accessibility

  • Alex Q. Chen
  • Simon Harper
  • Darren Lunn
  • Andrew Brown
Article

Abstract

The Web 2.0 sees once static pages evolve into hybrid applications, and content that was previously simple, now becoming increasingly complicated due to the many updating components located throughout the page. While beneficial for some users, these components (widgets) are often complex and will lead to confusion and frustration for others, notably those for whom accessibility is already an issue. While users and developers often perceive widgets as complete components (a Slideshow, or an Auto Suggest List), they are in-fact heterogeneous collections of code, and are therefore hard to computationally identify. Identification is critical if we wish to reverse engineer inaccessible widgets or ‘inject’ missing ‘WAI-ARIA’ into ‘RIAs’. In this case, we introduce a technique that analyses the code associated with a Web page to identify widgets using combinations of code constructs which enable uniquely identification. We go on to technically evaluate our approach with the most difficult widgets to distinguish between—Slideshows and Carousels—and then describe two prototype applications for visually impaired and older users by means of example.

Keywords

Web 2.0 widget identification widget classification disabilities ageing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asakawa, C., Itoh, T.: User interface of a home page reader. In: ASSETS ’98: Proceedings of the Third International ACM Conference on Assistive Technologies, pp. 149–156. ACM, New York (1998). doi:10.1145/274497.274526 CrossRefGoogle Scholar
  2. 2.
    Brown, A., Jay, C.: A review of assistive technologies: can users access dynamically updating information? SASWAT Technical Report 2, The University of Manchester, School of Computer Science, UK (2008). doi:http://wel-eprints.cs.manchester.ac.uk/70/
  3. 3.
    Brown, A., Jay, C., Harper, S.: Audio presentation of auto-suggest lists. In: W4A ’09: Proceedings of the 2009 International Cross-Disciplinary Conference on Web Accessibility (W4A), pp. 58–61. ACM, New York (2009). doi:10.1145/1535654.1535667 CrossRefGoogle Scholar
  4. 4.
    Brown, A., Jay, C., Harper, S.: Audio access to calendars. In: W4A 2010: Proceedings of the 2010 International Cross-Disciplinary Conference on Web Accessibility (W4A). ACM, New York (2010). doi:http://dl.acm.org/citation.cfm?doid=1805986.1806028 Google Scholar
  5. 5.
    Carmi, R., Itti, L.: Causal saliency effects during natural vision. In: ETRA ’06: Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, pp. 11–18. ACM, New York (2006). doi:10.1145/1117309.0410. URL: http://portal.acm.org/citation.cfm?id=1117309.0410 CrossRefGoogle Scholar
  6. 6.
    Chen, A.Q.: Widget identification and modification for web 2.0 access technologies (WIMWAT). SIGACCESS Access. Comput., pp. 11–18 (2010). doi:10.1145/1731849.1731851 Google Scholar
  7. 7.
    Chen, A.Q.: Profiling the web page’s behaviour layer. WIMWAT Technical Report 5, The University of Manchester, School of Computer Science, UK (2011). http://wel-eprints.cs.manchester.ac.uk/135/
  8. 8.
    Chen, A.Q., Harper, S.: Identifying web widgets. WIMWAT Technical Report 1, The University of Manchester, School of Computer Science, UK (2009). http://wel-eprints.cs.manchester.ac.uk/115/
  9. 9.
    Chen, C.L., Raman, T.V.: AxsJAX: a talking translation bot using google im: bringing web-2.0 applications to life. In: Proceedings of the 2008 International Cross-Disciplinary Conference on Web Accessibility (W4A), W4A ’08, pp. 54–56. ACM, New York (2008). doi:10.1145/1368044.1368056 Google Scholar
  10. 10.
    Craig, J., Cooper, M., Pappas, L., Schwerdtfeger, R., Seeman, L.: Accessible Rich Internet Applications (WAI-ARIA) 1.0. http://www.w3.org/TR/wai-aria/ (2009)
  11. 11.
    Dixon, M., Leventhal, D., Fogarty, J.: Content and hierarchy in pixel-based methods for reverse engineering interface structure. In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems, CHI ’11, pp. 969–978. ACM, New York (2011). doi:10.1145/1978942.1979086 Google Scholar
  12. 12.
    Dong, J., Sun, Y., Zhao, Y.: Design pattern detection by template matching. In: SAC ’08: Proceedings of the 2008 ACM symposium on Applied Computing, pp. 765–769. ACM, New York (2008). doi:http://dl.acm.org/citation.cfm?doid=1363686.1363864 CrossRefGoogle Scholar
  13. 13.
    Fukaya, K., Kubo, A., Washizaki, H., Fukazawa, Y.: Design pattern detection using source code of before applying design patterns. In: 1st International Workshop on Software Patterns and Quality (2007)Google Scholar
  14. 14.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)Google Scholar
  15. 15.
    Hailpern, J., Reid, L.G., Boardman, R., Annam, S.: Web 2.0: blind to an accessible new world. In: WWW ’09: Proceedings of the 18th International Conference on World Wide Web, pp. 821–830. ACM, New York (2009). doi:http://dl.acm.org/citation.cfm?doid=1526709.1526820 CrossRefGoogle Scholar
  16. 16.
    Hanson, V.L.: Age and web access: the next generation. In: W4A ’09: Proceedings of the 2009 International Cross-Disciplinary Conference on Web Accessibility (W4A), pp. 7–15. ACM, New York (2009). doi:10.1145/1535654.1535658 CrossRefGoogle Scholar
  17. 17.
    Hanson, V.L., Richards, J.T.: Achieving a more usable World Wide Web. Behav. Inf. Technol. 24(3), 231–246 (2005). doi:10.1080/01449290412331327465 CrossRefGoogle Scholar
  18. 18.
    Hartley, A.A.: Attention. In: Craik, F.I., Salthouse, T.A. (eds.) The Handbook of Aging and Cognition, chap. 1, pp. 3–53. Laurence Erlbaum Associates (1992). ISBN: 0–8058-0713-6Google Scholar
  19. 19.
    Jay, C., Brown, A., Harper, S.: Internal evaluation of the SASWAT audio browser. SASWAT Technical Report 6, The University of Manchester, School of Computer Science, UK (2010). doi:http://wel-eprints.cs.manchester.ac.uk/125/
  20. 20.
    Kurniawan, S., King, A., Evans, D., Blenkhorn, P.: Personalising web page presentation for older people. Interact. Comput. 18(3), 457–477 (2006). doi:10.1016/j.intcom.2005.11.006. URL: http://www.sciencedirect.com/science/article/B6V0D-4HYMY31-6/2/0c620c176c9eed3ef2acc2d287de3e9a. Human Factors in Personalised Systems and ServicesCrossRefGoogle Scholar
  21. 21.
    Lunn, D., Harper, S.: Using galvanic skin response measures to identify areas of frustration for older web 2.0 users. In: W4A ’10: Proceedings of the 2010 International Cross-Disciplinary Conference on Web Accessibility (W4A). ACM, New York (2010). doi:http://dl.acm.org/citation.cfm?doid=1805986.1806032 Google Scholar
  22. 22.
    Memmert, D.: The effects of eye movements, age, and expertise on inattentional blindness. Conscious. Cogn. 15(3), 620–627 (2006). doi:10.1016/j.concog.2006.01.001. URL: http://www.sciencedirect.com/science/article/B6WD0-4J91R6C-1/2/764cb264eedae395b41d0a9cc7cb9ad9 CrossRefGoogle Scholar
  23. 23.
    Miyashita, H., Sato, D., Takagi, H., Asakawa, C.: Aibrowser for multimedia: introducing multimedia content accessibility for visually impaired users. In: Assets ’07: Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 91–98. ACM, New York (2007). doi:10.1145/1296843.1296860 CrossRefGoogle Scholar
  24. 24.
    Sàenz, M., Buracas, G.T., Boynton, G.M.: Global feature-based attention for motion and color. Vis. Res. 43(6), 629–637 (2003). doi:10.1016/S0042-6989(02)00595-3. URL: http://www.sciencedirect.com/science/article/B6T0W-47XSSK6-1/2/b540ce8624f967c247b3e30a4e2ad97f CrossRefGoogle Scholar
  25. 25.
    Thiessen, P., Chen, C.: Ajax live regions: chat as a case example. In: W4A ’07: Proceedings of the 2007 International Cross-Disciplinary Conference on Web Accessibility (W4A), pp. 7–14. ACM, New York (2007). doi:http://dl.acm.org/citation.cfm?doid=1243441.1243450 CrossRefGoogle Scholar
  26. 26.
    Varakin, D.A., Levin, D.T.: Change blindness and visual memory: visual representations get rich and act poor. Br. J. Psychol. 97(1), 51–77 (2006). doi:10.1348/000712605X68906. URL: http://www.ingentaconnect.com/content/bpsoc/bjp/2006/00000097/00000001/art00004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alex Q. Chen
    • 1
  • Simon Harper
    • 1
  • Darren Lunn
    • 1
  • Andrew Brown
    • 1
  1. 1.School of Computer Science, Information Management GroupThe University of ManchesterManchesterUK

Personalised recommendations